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The lectures are intended to give a personal perspective on
machine learning and pattern analysis and current frontiers. We
will cover:

@ What is Pattern Analysis?
@ Example of linear pattern functions
@ Non-linearity though the kernel approach

@ Approaches to deeper learning and complex applications
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Pattern Analysis

@ Data can exhibit regularities that may not be immediately
apparent
e exact patterns — eg motions of planets
¢ complex patterns — eg genes in DNA
@ probabilistic patterns — eg market research
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Pattern Analysis

@ Data can exhibit regularities that may not be immediately
apparent

e exact patterns — eg motions of planets
¢ complex patterns — eg genes in DNA
@ probabilistic patterns — eg market research
@ Detecting patterns makes it possible to understand and/or
exploit the regularities to make predictions
@ Pattern analysis is the study of automatic detection of
patterns in data
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Defining patterns

@ Exact patterns: non-trivial function f such that

f(x) =0 for all x

Shawe-Taylor Frontiers of ML



Defining patterns

@ Exact patterns: non-trivial function f such that
f(x) =0 for all x
@ Approximate patterns: f such that

f(x)~0 for all x

Shawe-Taylor Frontiers of ML



Defining patterns

@ Exact patterns: non-trivial function f such that
f(x) =0 for all x
@ Approximate patterns: f such that
f(x)~0 for all x
@ Statistical patterns: f such that
Ex~p[f(x)] ~ 0

where D is the distribution generating x.
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Pattern analysis algorithms

We would like algorithms to be:

@ Computationally efficient — running time polynomial in the
size of the data — often needs to be of a low degree
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@ Computationally efficient — running time polynomial in the
size of the data — often needs to be of a low degree

@ Robust — able to handle noisy data, eg examples misclassified,
noisy sensors or outputs only to a certain accuracy
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Pattern analysis algorithms

We would like algorithms to be:

@ Computationally efficient — running time polynomial in the
size of the data — often needs to be of a low degree

@ Robust — able to handle noisy data, eg examples misclassified,
noisy sensors or outputs only to a certain accuracy

@ Statistical stability — able to distinguish between chance
patterns and those characteristic of the underlying source of
the data
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Brief Historical Perspective

@ Machine learning using neural like structures first considered
seriously in 1960s with such systems as the Perceptron
@ Linear patterns
@ Simple learning algorithm
@ shown to be limited in complexity
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Brief Historical Perspective

@ Machine learning using neural like structures first considered
seriously in 1960s with such systems as the Perceptron
@ Linear patterns
@ Simple learning algorithm
@ shown to be limited in complexity
@ Resurrection of ideas in more powerful multi-layer perceptrons
in 1980s
@ networks of perceptrons with continuous activation functions
o very slow learning
@ no statistical analysis
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Kernel methods

Kernel methods (re)introduced in 1990s with Support Vector
Machines
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Kernel methods

Kernel methods (re)introduced in 1990s with Support Vector
Machines
@ Linear functions but in high dimensional spaces equivalent to
non-linear functions in the input space
@ Statistical analysis showing large margin can overcome curse
of dimensionality
@ Extensions rapidly introduced for many other tasks other than
classification
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Kernel methods approach

@ Data embedded into a Euclidean feature space
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Kernel methods approach

@ Data embedded into a Euclidean feature space
@ Linear relations are sought among the images of the data

@ Algorithms implemented so that only require inner products
between vectors

@ Embedding designed so that inner products of images of two
points can be computed directly by an efficient ‘short-cut’
known as the kernel.
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Worked example: Ridge Regression

Consider the problem of finding a homogeneous real-valued linear
function

n
g(x) = (w,x) =xw = wx;
i=1
that best interpolates a given training set

S={(x,y), -, Xm, Ym)}

of points x; from X C R"” with corresponding labels y; in Y C R.
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Possible pattern function

@ Measures discrepancy between function output and correct
output — squared to ensure always positive:

fe((x,y)) = (g(x) — )

Note that the pattern function f, is not itself a linear
function, but a simple functional of the linear functions g.
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Possible pattern function

@ Measures discrepancy between function output and correct
output — squared to ensure always positive:

fe((x,y)) = (g(x) — )

Note that the pattern function f, is not itself a linear
function, but a simple functional of the linear functions g.

@ We introduce notation: matrix X has rows the m examples of
S. Hence we can write

E=y—Xw

for the vector of differences between g(x;) and y;.
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Optimising the choice of

Need to ensure flexibility of g is controlled — controlling the norm
of w proves effective:

min Ly(w, S) = min )\HWH2 + ||§H2,
w w
where we can compute

I€? = {y — Xw,y — Xw)
= yy—2w'Xy +wXXw

Setting derivative of £y(w, S) equal to 0 gives

X'Xw + Aw = (XX + Al,) w = X'y
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Primal solution

We get the primal solution weight vector:
w= (X'X+Al,) Xy

and regression function

Shawe-Taylor Frontiers of ML



Dual solution

A dual solution should involve only computation of inner products
— this is achieved by expressing the weight vector as a linear
combination of the training examples:

X'Xw + Aw = X'y implies

1
w=_(Xy-XXw) = x’X(y—xW) =Xa,

>4|'—'

where

(y — Xw) (1)

>4|'—'

or equivalently

m
W = E QX
i=1
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Dual solution

Substituting w = X'« into equation (1) we obtain:
A=y — XX«

i
implying / B
(XX + Alp)a =y

This gives the dual solution:
a=(XX'+Al,) "y

and regression function

m
g(x) =xw=xXa= Za;(x,x,-)
i=1
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Key ingredients of dual solution

Step 1: Compute
a= K+ ty

where K = XX’ that is Kj; = (x;, x;)
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Key ingredients of dual solution

Step 1: Compute
a= K+ ty

where K = XX’ that is Kj; = (x;, x;)

Step 2: Evaluate on new point x by

g(x) = ailx,x)
i=1
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Key ingredients of dual solution

Step 1: Compute
a= K+ ty

where K = XX’ that is Kj; = (x;, x;)

Step 2: Evaluate on new point x by
m

g(x) =Y ai(x.x;)
i=1

Important observation: Both steps only involve inner products
between datapoints
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Applying the ‘kernel trick’

Since the computation only involves inner products, we can
substitute for all occurrences of (-,-) a kernel function « that
computes:

K(x,2) = (¢(x), ¢(2))

and we obtain an algorithm for ridge regression in the feature
space F defined by the mapping

¢:x+— P(x) € F

Note if ¢ is the identity we remain linear in the input space.
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A simple kernel example

The simplest non-trivial kernel function is the quadratic kernel:
_ 2
H(X> Z) - <X> Z>

involving just one extra operation. But surprisingly this kernel
function now corresponds to a complex feature mapping:

k(x,2) = (X2)? =2/ (xx)z

= (vec(zZ'), vec(xx'))

where vec(A) stacks the columns of the matrix A on top of each
other. Hence, k corresponds to the feature mapping

¢ x — vec(xx')

Shawe-Taylor Frontiers of ML



Implications of the kernel trick

@ Consider for example computing a regression function over
1000 images represented by pixel vectors — say
32 x 32 = 1024.

Shawe-Taylor Frontiers of ML



Implications of the kernel trick

@ Consider for example computing a regression function over
1000 images represented by pixel vectors — say
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@ By using the quadratic kernel we implement the regression
function in a 1,000,000 dimensional space
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Implications of the kernel trick

@ Consider for example computing a regression function over
1000 images represented by pixel vectors — say
32 x 32 = 1024.

@ By using the quadratic kernel we implement the regression
function in a 1,000,000 dimensional space

@ but actually using less computation for the learning phase
than we did in the original space.
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Implications of kernel algorithms

@ Can perform linear regression in very high-dimensional (even
infinite dimensional) spaces efficiently.
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Implications of kernel algorithms

@ Can perform linear regression in very high-dimensional (even
infinite dimensional) spaces efficiently.

@ This is equivalent to performing non-linear regression in the
original input space: for example quadratic kernel leads to
solution of the form

g(x) =Y ailxi,x)
i=1

that is a quadratic polynomial function of the components of
the input vector x.
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Implications of kernel algorithms

@ Can perform linear regression in very high-dimensional (even
infinite dimensional) spaces efficiently.

@ This is equivalent to performing non-linear regression in the
original input space: for example quadratic kernel leads to
solution of the form

m
g(x) = Zai<xi>x>2
i=1
that is a quadratic polynomial function of the components of

the input vector x.

@ Using these high-dimensional spaces must surely come with a
health warning, what about the ?
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Theories of learning

@ Basic approach of SLT is to view learning from a statistical
viewpoint.
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@ Basic approach of SLT is to view learning from a statistical
viewpoint.

@ Aim of any theory is to model real/ artificial phenomena so
that we can better understand/ predict/ exploit them.
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Theories of learning

@ Basic approach of SLT is to view learning from a statistical
viewpoint.

@ Aim of any theory is to model real/ artificial phenomena so
that we can better understand/ predict/ exploit them.

@ SLT is just one approach to understanding/ predicting/
exploiting learning systems, others include Bayesian inference,
inductive inference, statistical physics, traditional statistical
analysis.
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Theories of learning cont.

@ Each theory makes assumptions about the phenomenon of
learning and based on these derives predictions of behaviour
as well as algorithms that aim at optimising the predictions.
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Theories of learning cont.

@ Each theory makes assumptions about the phenomenon of
learning and based on these derives predictions of behaviour
as well as algorithms that aim at optimising the predictions.

@ Each theory has strengths and weaknesses — the better it
captures the key details of real world system, the better the
theory and the better the chances of it making accurate
predictions and driving good algorithms.
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General statistical considerations

@ Statistical models (not including Bayesian) begin with an
assumption that the data is generated by an underlying
distribution D typically not given explicitly to the learner.
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General statistical considerations

@ Statistical models (not including Bayesian) begin with an
assumption that the data is generated by an underlying
distribution D typically not given explicitly to the learner.

o If we are trying to classify cancerous tissue from healthy
tissue, there are two distributions, one for cancerous cells and
one for healthy ones.
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General statistical considerations cont.

@ Usually the distribution subsumes the processes of the
natural/artificial world that we are studying.
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General statistical considerations cont.

@ Usually the distribution subsumes the processes of the
natural/artificial world that we are studying.

@ Rather than accessing the distribution directly, statistical
learning typically assumes that we are given a ‘training
sample’ or ‘training set’

S = {(X1,Y1), ceey (Xm,ym)}

generated identically and independently (i.i.d.) according to
the distribution D.
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Generalisation of a learner

@ Assume that we have a learning algorithm A that chooses a
function Ax(S) from a function space F in response to the
training set S.
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Generalisation of a learner

@ Assume that we have a learning algorithm A that chooses a

function Ax(S) from a function space F in response to the
training set S.

@ From a statistical point of view the quantity of interest is the
random variable:

6(57 A, ]:) = IE(x,y)er [E(A]:(SL x,y)] )

where £ is a ‘loss’ function that measures the discrepancy
between Ax(S)(x) and y.
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Generalisation of a learner

@ For example, in the case of classification £ is 1 if the two
disagree and 0 otherwise, while for regression it could be the
square of the difference between Ax(S)(x) and y.
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Generalisation of a learner

@ For example, in the case of classification £ is 1 if the two
disagree and 0 otherwise, while for regression it could be the
square of the difference between Ax(S)(x) and y.

@ We refer to the random variable €(S, A, F) as the
generalisation of the learner.
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Example of Generalisation |

@ We consider the Breast Cancer dataset from the UCI
repository.
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Example of Generalisation |

@ We consider the Breast Cancer dataset from the UCI
repository.

@ Use the simple Parzen window classifier described by the
weight vector

+

w —w

where w™ is the average of the positive training examples
and w™ is average of negative training examples. Threshold is
set so hyperplane bisects the line joining these two points.
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Example of Generalisation Il

@ Given a size m of the training set, by repeatedly drawing
random training sets S we estimate the distribution of

(S, A F) = IE:(x,y)ND [L(AF(S), %, )],

by using the test set error as a proxy for the true
generalisation.
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Example of Generalisation Il

@ Given a size m of the training set, by repeatedly drawing
random training sets S we estimate the distribution of

(S, A F) = IE:(x,y)ND [L(AF(S), %, )],

by using the test set error as a proxy for the true
generalisation.

@ We plot the histogram and the average of the distribution for
various sizes of training set — initially the whole dataset gives
a single value if we use training and test as all the examples,
but then we plot for training set sizes:

342,273,205, 137, 68, 34, 27, 20, 14, 7.
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Example of Generalisation Il

@ Since the expected classifier is in all cases the same:
E[AF(S)] = Es|wi —wg]
= Es[wg] — Es [wg]
= Bl - B[,
we do not expect large differences in the average of the

distribution, though the non-linearity of the loss function
means they won't be the same exactly.
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Error distribution: full dataset
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Error distribution: dataset size: 342

10 B
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Error distribution: dataset size: 273
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Error distribution: dataset size: 205
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Error distribution: dataset size: 137
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Error distribution: dataset size: 68

15+ B

10 :

Shawe-Taylor Frontiers of ML



Error distribution: dataset size: 34
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Error distribution: dataset size: 27
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Error distribution: dataset size: 20
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10 B
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Error distribution: dataset size: 14
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Error distribution: dataset size: 7
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Expected versus confident bounds

@ For a finite sample the generalisation €(S, A, F) has a
distribution depending on the algorithm, function class and
sample size m.
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Expected versus confident bounds

@ For a finite sample the generalisation €(S, A, F) has a
distribution depending on the algorithm, function class and
sample size m.

@ Traditional statistics has concentrated on the mean of this
distribution — but this quantity can be misleading, eg for low
fold cross-validation.
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Expected versus confident bounds cont.

@ Statistical learning theory has preferred to analyse the tail of
the distribution, finding a bound which holds with high
probability, i.e. for the majority of training sets.
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Expected versus confident bounds cont.

@ Statistical learning theory has preferred to analyse the tail of
the distribution, finding a bound which holds with high
probability, i.e. for the majority of training sets.

@ This looks like a statistical test — significant at a 1%
confidence means that the chances of the conclusion not
being true are less than 1% over random samples of that size.
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Expected versus confident bounds cont.

@ Statistical learning theory has preferred to analyse the tail of
the distribution, finding a bound which holds with high
probability, i.e. for the majority of training sets.

@ This looks like a statistical test — significant at a 1%
confidence means that the chances of the conclusion not
being true are less than 1% over random samples of that size.

@ This is also the source of the acronym PAC: probably
approximately correct, the ‘confidence’ parameter ¢ is the
probability that we have been misled by the training set.
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Concentration inequalities

@ Statistical Learning is concerned with the reliability or stability
of inferences made from a random sample.
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Concentration inequalities

@ Statistical Learning is concerned with the reliability or stability
of inferences made from a random sample.

@ Random variables with this property have been a subject of
ongoing interest to probabilists and statisticians.
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Concentration inequalities cont.

@ As an example consider the mean of a sample of m
1-dimensional random variables Xi, ..., Xy;:
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Concentration inequalities cont.

@ As an example consider the mean of a sample of m
1-dimensional random variables Xi, ..., Xy;:

@ Hoeffding's inequality states that if X; € [a;, b;]

m262
P{ISm — E[Sm]| = €} < 2exp (‘ﬁ)

Note how the probability falls off exponentially with the
distance from the mean and with the number of variables.
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Concentration for SLT

@ We are now going to look at deriving SLT results from
concentration inequalities.
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Concentration for SLT

@ We are now going to look at deriving SLT results from
concentration inequalities.

@ Perhaps the best known form is due to McDiarmid (although
he was actually representing previously derived results):
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McDiarmid’s inequality

Let Xi,...,X, be independent random variables taking values in a
set A, and assume that f : A” — R satisfies

sup [f(x1,.oosxn) — F(X15. 0y Riy Xit1, -, Xn)| < iy
X150y Xn, K EA

for1 < i< n. Then for all e > 0,

52
P{f(X1>"'7Xn)_Ef(le"'vxn) > 6} §exp <%>
i=1Ci
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McDiarmid’s inequality

Let Xi,...,X, be independent random variables taking values in a
set A, and assume that f : A” — R satisfies

sup [f(x1,.oosxn) — F(X15. 0y Riy Xit1, -, Xn)| < iy
X150y Xn, K EA

for1 < i< n. Then for all e > 0,

52
P{f(X1>"'7Xn)_Ef(le"'vxn) > 6} §exp <%>
i=1Ci

o Hoeffding is a special case when f(x1,...,x,) =S,
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Using McDiarmid

@ By setting the right hand side equal to §, we can always invert
McDiarmid to get a high confidence bound: with probability
atleast 1 — ¢

noe2? 1
F(Xs o Xn) < EF (Xts..o, X)) + %logg
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Using McDiarmid

@ By setting the right hand side equal to §, we can always invert
McDiarmid to get a high confidence bound: with probability
atleast 1 — ¢

noe2? 1
F(Xs o Xn) < EF (Xts..o, X)) + %logg

@ If ¢; = c¢/n for each i this reduces to

c2 1
F(Xto Xa) <EF(Xe, oo Xa) 4+ 5 log 5
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Rademacher complexity

The Rademacher complexity provides a way of measuring the
complexity of a function class F by testing how well on average it
can align with random noise:

is known as the Rademacher complexity of the function class F
where o,/ = 1, m are uniformly random +1, —1 valued variables.

m

% Z oif (zi)

i=1

Rm(f) = Es, [

sup
feF
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Main Rademacher theorem

The main theorem of Rademacher complexity: with probability at
least 1 — 0 over random samples S of size m, every f € F satisfies

E[F(2)] < BIF)] + Rn(F) + 1/ "L
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Main Rademacher theorem

The main theorem of Rademacher complexity: with probability at
least 1 — 0 over random samples S of size m, every f € F satisfies

E[F(2)] < BIF)] + Rn(F) + 1/ "L

@ Note that Rademacher complexity gives the expected value of
the maximal correlation with random noise — a very natural
measure of capacity.
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Main Rademacher theorem

The main theorem of Rademacher complexity: with probability at
least 1 — 0 over random samples S of size m, every f € F satisfies

In(1/9)

2m

E[f(2)] < E[f(2)] + Rm(F) +

@ Note that Rademacher complexity gives the expected value of
the maximal correlation with random noise — a very natural
measure of capacity.

@ Note that the Rademacher complexity is distribution
dependent since it involves an expectation over the choice of
sample — this might seem hard to compute.
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Empirical Rademacher theorem

@ Since the empirical Rademacher complexity

m

% Z oif (zi)

R’m(}") =E, [sup
=1

feF

Zl,...,Zm]

is concentrated, we can make a further application of
McDiarmid to obtain with probability at least 1 — ¢

Ep [f(2)] < BIF(2)] + Rm(F) + 3¢/ 2.
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Application to large margin classification

@ Rademacher complexity comes into its own for analysing
Support Vector Machines as well as Boosting algorithms.
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Rademacher complexity for SVMs

@ The Rademacher complexity of a class of linear functions with
bounded 2-norm:

C{x—=(w,¢(x)): |w|<B}
= Fs,

where we assume a kernel defined feature space with

(0(x), 6(2)) = K(x,2).
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Rademacher complexity of

The following derivation gives the result

'E‘)m(}-B)

IN
3%

= Eo; |sup |= ) oif (x))
feEFp mi:l
= E(r sup w, — 0i¢(xi)>u
[wll<B < m;
2B [||&
< _Eo— i i
< = ;w(x) ]
i 1/2
2B m m
= ZE, | [ (D] aiox), > ois(x)
i=1 Jj=1
E ZO“O"H(X' X;) _ 26 Zm(x- X;)
o i0j IER] m : iy Ki

ij=1
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Support Vector Machines (SVM)

@ SVM seeks linear function in a feature space defined implicitly
via a kernel «:

K(x,2) = (0(x), 6(2))

that optimises a bound on the generalisation.
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Support Vector Machines (SVM)

@ SVM seeks linear function in a feature space defined implicitly
via a kernel «:

K(x,2) = (0(x), 6(2))

that optimises a bound on the generalisation.

@ The first step is to introduce a loss function which upper
bounds the discrete loss

P(y # sen(g(x))) = E [H(-yg(x))],

where H is the Heaviside function.
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Margins in SVMs

@ Critical to the bound will be the margin of the classifier

7(x7y) = yg(x) = y(<W,¢(X)> + b) :

positive if correctly classified, and measures distance from the
separating hyperplane when the weight vector is normalised.
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Margins in SVMs

@ Critical to the bound will be the margin of the classifier

7(x7y) = yg(x) = y(<W,¢(X)> + b) :

positive if correctly classified, and measures distance from the
separating hyperplane when the weight vector is normalised.

@ The margin of a linear function g is
7(8) = miny(xi, yi)

though this is frequently increased to allow some ‘margin
errors’.
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Margins in SVMs
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Applying the Rademacher theorem

@ Consider the loss function A : R — [0, 1], given by

1, if a>0;
A(a) =¢ 1+a/y, if—y<a<Q;
0, otherwise.
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Applying the Rademacher theorem

@ Consider the loss function A : R — [0, 1], given by

1, if a>0;
A(a) =< 1+4a/y, if—y<a<o;
0, otherwise.

@ By the Rademacher Theorem and since the loss function A
dominates H, we have that

E[H(-yg(x))] E[A(-yg(x))]

<
< E[A(-yg(x)] +

Rn(Ao F)+3 %
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Empirical loss and slack variables

@ But the function A(—y;g(x;)) <&/, fori=1,...,m, and

1 & A In(2/4)
E[H(-yg(x))] < m;§f+ Rin(A o F) +3\/ — —.
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Empirical loss and slack variables

@ But the function A(—y;g(x;)) <&/, fori=1,...,m, and

1 & A In(2/4)
E[H(-yg(x))] < m;§f+ Rin(A o F) +3\/ — —.

@ The final missing ingredient to complete the bound is to
bound Ry, (Ao F) in terms of Ry,(F).

Shawe-Taylor Frontiers of ML



Empirical loss and slack variables

@ But the function A(—y;g(x;)) <&/, fori=1,...,m, and

o)
1 & A In(2/4)
E[H(— < — i+ Rm —.
(H(-yet) < - ;a + Rm(A o F) + 34/ =
@ The fin;il missing ingredient to complete the bound is to
bound Ry, (Ao F) in terms of Ry,(F).

@ This can be obtained in terms of the maximal slope of the
function A: Ry(Ao F) < 2Rp(F).
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Final SVM bound

@ Assembling the result we obtain:

Py # sen(g(x))) = E[H(-yg(x))]

1 & 4 In(2/4)
Sm_’y’z:: ;’f Xj, X I om
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Final SVM bound

@ Assembling the result we obtain:

y #sgn(g(x))) = E[H(—yg(x
Zf, 2 f;& )+ 32
@ Note that for the Gaussian kernel this reduces to
Py # sn(g() < - - ’z’;g, NG
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Applying to 1-norm SVMs

We take the following formulation of the 1-norm SVM to optimise
the bound:

Minwbre —7+CO &
subject to v ((w, ¢ (x)) +b) >7 &, &>0,  (2)
i=1,...,m, and |w|?=1.

Note that
§i= (v — yig(xi),

where g(-) = (w, ¢(+)) + b.
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Error distribution: dataset size: 205
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Error distribution: dataset size: 137
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Error distribution: dataset size: 68
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Error distribution: dataset size: 34
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Error distribution: dataset size: 27
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Error distribution: dataset size: 20
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Error distribution: dataset size: 14
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Error distribution: dataset size: 7
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Dual form of the SVM problem

Forming the Lagrangian L(w, b,~, &, a, B, A):
Y+ CY &= ailyil(d(xi), w) + b) — v +¢&]
i=1 i=1

-0+ (1wl - 1)
i=1

with a; > 0 and 3; > 0.

Shawe-Taylor Frontiers of ML



Dual form of the SVM problem

Taking derivatives gives:

8L(W7 b7r}/7 67 «, /87 A)

- = 2w — ’Z,:;yioéiéb(xi) =0,
dL(w, b, gg,a,ﬂ,k) C—ai—f; =0,
dL(w, b, wa,bf,a,ﬂ, N éy,a, =0,
aL(w,b,va,f,a,ﬁ,A) 1 zm:a,- = 0.

i=1
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Dual form of the SVM problem

1 m
Lo, \) = I Z yiyjeicyk (Xi, %) — A,
ij=1

which, again optimising with respect to A, gives
1/2

1 m
A= 5 Z yiyjoiojk (Xi, X;)
ij=1

Shawe-Taylor Frontiers of ML



Dual form of the SVM problem

equivalent to maximising

m
L(a) = — Z a,-ajy,-yj/i (X,',Xj),
ij=1

subject to the constraints

m m
0<a;<C, Zai:]- Zy,-a;:o
i=1 i=1

to give solution
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Dual form of the SVM problem

Kuhn-Tucker conditions:

ailyi({¢ (xi) ,w) + b) =y +&] = 0
Bi&i =
These imply:
@ «; # 0 only if

Yil{d (xi),w) +b) =~ —§;

these correspond to support vectors — their margins are less
than or equal to 7.

@ & # 0 only if 5; = 0 implying that a; = C, i.e. for
0 < aj < C margin is exactly 7.
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Dual form of the SVM problem

The solution can then be computed as:

choose i,j such that —C < ojy; <0 <ajy; < C
m m
b* = —-0.5 (Z apyihk (Xk, xi) + Z agykk (X, xj)>
k=1 k=1

f() = sen | ) ajym(x,)+ b
j=1
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Dual form of the SVM problem

We can compute the margin as follows:

1/2

o= Zy,yjoz O/ K X,,Xj)

ij=1
o= (2N <Zakykm xk,xJ)+b*>

k=1
Similarly we can compute
zmjf‘ —2X\* +*
' C

if we wish to compute the value of the bound.
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Dual form of the SVM problem

Decision boundary and v margin for 1-norm svm with a gaussian
kernel:
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Dual form of the SVM problem

@ Have introduced a slightly non-standard version of the SVM
but makes v-SVM very simple to define.
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Dual form of the SVM problem

@ Have introduced a slightly non-standard version of the SVM
but makes v-SVM very simple to define.
@ Consider expressing C = 1/(vm):
e implies 0 < «; < 1/(vm)
o if £ > 0then o; =1/(vm), but Y./" a; =1 so at most vm
inputs can have this hold.
@ equally at least vm inputs have «; # 0
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Dual form of the SVM problem

@ Have introduced a slightly non-standard version of the SVM
but makes v-SVM very simple to define.
@ Consider expressing C = 1/(vm):
o implies 0 < a; < 1/(vm)
o if £ > 0then o; =1/(vm), but Y./" a; =1 so at most vm
inputs can have this hold.
@ equally at least vm inputs have «; # 0
@ Hence, v can be seen as the fraction of ‘support vectors’, a
natural measure of the noise in the data.
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Alternative form of the SVM problem

Note more traditional form of the dual SVM optimisation:

m

1 m
L(a) = ZO[,' — 5 Z Oz,'Ozjy,'ijd (X,‘,Xj).

i=1 ij=1
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Alternative form of the SVM problem

@ Arises from considering renormalising so that output at
margin is 1 and minimising the weight vector.
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Alternative form of the SVM problem

@ Arises from considering renormalising so that output at
margin is 1 and minimising the weight vector.

@ The values of the regularisation parameter C do not
correspond.
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Alternative form of the SVM problem

@ Arises from considering renormalising so that output at
margin is 1 and minimising the weight vector.

@ The values of the regularisation parameter C do not
correspond.

@ Has advantage of simple kernel adatron algorithm if we
consider the case of fixing b = 0 which removes the constraint
>, aiyi = 0, so can perform gradient descent on individual
«; independently.
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Alternative form of the SVM problem

@ Arises from considering renormalising so that output at
margin is 1 and minimising the weight vector.

@ The values of the regularisation parameter C do not
correspond.

@ Has advantage of simple kernel adatron algorithm if we
consider the case of fixing b = 0 which removes the constraint
>, aiyi = 0, so can perform gradient descent on individual
«; independently.

@ SMO algorithm performs the update on pairs of a;, a; to
ensure constraints remain satisfied.
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Error distribution: dataset size: 342

25+ A
20+ A
151 :
10t :
sk A
0 ‘ ‘

0 0.2 0.4 0.6 0.8 1

Shawe-Taylor Frontiers of ML



Error distribution: dataset size: 273
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Linear programming machine

@ Boosting leverages a large class H of ‘weak learners’ only able
to classify slightly above 50% accuracy to build a (small)
linear combination that performs very accurately.
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Linear programming machine

@ Boosting leverages a large class H of ‘weak learners’ only able
to classify slightly above 50% accuracy to build a (small)
linear combination that performs very accurately.

@ Some questions about why it works so well
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Linear programming machine

@ Boosting leverages a large class H of ‘weak learners’ only able
to classify slightly above 50% accuracy to build a (small)
linear combination that performs very accurately.

@ Some questions about why it works so well

@ Seeks linear function in a feature space defined explicitly and
can use the 1-norm to keep most coefficients zero.
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Linear programming boosting

@ Very slight generalisation considers the features as a set H;; of
‘weak’ learners (and includes the constant function as one
weak learner and negative of each weak learner):

mina,¢ lalls + €324 &

subjectto yHja>1-¢&,& >0,a >0
i=1,...,m.

where a is the vector of coefficients.
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Final Boosting bound

@ Applying a similar strategy for Boosting with the 1-norm of
the slack variables we arrive at Linear programming boosting

that minimises .
D am+C) &
h i=1

where & = (1 —y; >, anh(x;)), and ap > 0.
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Final Boosting bound

@ Applying a similar strategy for Boosting with the 1-norm of
the slack variables we arrive at Linear programming boosting

that minimises .
D am+C) &
h i=1

where & = (1 —y; >, anh(x;)), and ap > 0.
@ with corresponding bound:

P(y # segn(g ())) = E[H(-y

<—Z&+R Z +3\/|" 2/5

where moving to a linear combination of the weak learners H
has only cost factor of the 1-norm of the coefficients (ap)pep-
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Alternative version

@ Can explicitly optimise margin with 1-norm fixed:
mMaXp,a.¢ p—DY &

subject to yHa>p—¢;, & >0,a; >0
N
2j=13 =1L
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Alternative version

@ Can explicitly optimise margin with 1-norm fixed:
mMaXp,a.¢ p—DY &

subject to yHa>p—¢;, & >0,a; >0
N
2j=13 =1L

@ Dual has the following form:
ming 153

subject to >, uiyiH; < B, j=1,....N,
Z;n:lu,':].,OSU,'SD.
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Column generation

Can solve the dual linear programme using an iterative method:

1

SOl WN

initialise vy =1/m,i=1,....m, B =00, J =10
choose j* that maximises f(j) = > 7 ujy;Hj;
if £(j*) < 3 solve primal restricted to J and exit
J=JU{/}

Solve dual restricted to set J to give uj, 8

Go to 2

Shawe-Taylor Frontiers of ML



Column generation

Can solve the dual linear programme using an iterative method:

1

SOl WN

initialise vy =1/m,i=1,....m, B =00, J =10
choose j* that maximises f(j) = > 7 ujy;Hj;
if £(j*) < 3 solve primal restricted to J and exit
J=JU{/}

Solve dual restricted to set J to give uj, 8

Go to 2

@ Note that u; is a distribution on the examples
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Column generation

Can solve the dual linear programme using an iterative method:

1 initialise uy =1/m,i=1,...,m, B =00, J =10
m

2 choose j* that maximises f(j) = > 7 ujyiHj

3 if f(j*) < [ solve primal restricted to J and exit
4 J=JU{*}

5 Solve dual restricted to set J to give u;, 5

6 Goto?2

@ Note that u; is a distribution on the examples

@ Each j added acts like an additional weak learner

Shawe-Taylor Frontiers of ML



Column generation

solve the dual linear programme using an iterative method:
initialise vy =1/m,i=1,....m, B =00, J =10

choose j* that maximises f(j) = > 7 ujy;Hj;

if £(j*) < 3 solve primal restricted to J and exit
J=JU{/"}

Solve dual restricted to set J to give uj, 8

Go to 2

@ Note that u; is a distribution on the examples

Q
)
=)

SOl WN R

@ Each j added acts like an additional weak learner

@ f(j) is simply the weighted classification accuracy
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Column generation

Q
)

SOl WN R

e © ¢ ¢

solve the dual linear programme using an iterative method:
initialise vy =1/m,i=1,....m, B =00, J =10

choose j* that maximises f(j) = > 7 ujy;Hj;

if £(j*) < 3 solve primal restricted to J and exit
J=JU{/"}

Solve dual restricted to set J to give uj, 8

Go to 2

Note that u; is a distribution on the examples
Each j added acts like an additional weak learner
f(j) is simply the weighted classification accuracy

Hence gives ‘boosting’ algorithm - with previous weights
updated satisfying error bound
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Column generation

Q
)

SOl WN R

e © ¢ ¢

solve the dual linear programme using an iterative method:
initialise vy =1/m,i=1,....m, B =00, J =10

choose j* that maximises f(j) = > 7 ujy;Hj;

if £(j*) < 3 solve primal restricted to J and exit
J=JU{j"}

Solve dual restricted to set J to give uj, 8

Go to 2

Note that u; is a distribution on the examples

Each j added acts like an additional weak learner

f(j) is simply the weighted classification accuracy

Hence gives ‘boosting’ algorithm - with previous weights
updated satisfying error bound

Guaranteed convergence and soft stopping criterion

Shawe-Taylor Frontiers of ML



Multiple kernel learning

@ MKL puts a 1-norm constraint on a linear combination of
kernels:

N N
{m(x,z) = Zztfit(x,z) Dz > O,Zzt = 1}
t=1 t=1

and trains an SVM while optimizing z; — a convex problem,
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Multiple kernel learning

@ MKL puts a 1-norm constraint on a linear combination of
kernels:

N N
{m(x,z) = Zztfit(x,z) Dz > O,Zzt = 1}
t=1 t=1

and trains an SVM while optimizing z; — a convex problem,

® equivalent to performing Linear Programming boosting over
the (infinite) set of functions

N
F=JF
t=1
where Fi = {x — (w, ¢¢ (x)) : [|w] < 1}.
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Multiple kernel learning

@ The corresponding Rademacher bound gives

P(y # sgn(g(x)))
1 &, Llp In(2/9)
S m,y ; f/ 'Y <U th) m
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Multiple kernel learning

@ The corresponding Rademacher bound gives
P(y # sgn(g(x)))
1 & Ls In(2/6)
< -
ot (0) A

t=1

@ provided we can bound
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Bounding MKL

@ First further applications of McDiarmid gives with probability
1 — §g of a random selection of o*:

In(1/6:)
< =
m(F) m?g;Za f(x;) + 5
2 N A In(1/6;)
= A <
and p. fgﬁt;(f' f(xi) < Rm(Ft) +4 5

with probability 1 — d;
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Bounding MKL

@ Hence taking 6; = 0/2(N + 1) for t =0,..., N

(- 07)

2 In(2(N + 1)/0)
< — NN T
_miggg oif(x;)+4 o

2 In(2 ( )/5)
< = i Sl S e
< o 2 D) 4

2 ~ In(2(N + 1
< Z max Rn(F:)+8 In(2(N +1)/9)

m 1<t<N 2m

with probability 1 — 4/2.
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Bounding MKL

@ This gives an overall bound on the generalisation of MKL of

P(y # sen(g(x)) ZE, - max tr(Ke) +

ym 1<t

8 [In(2(N+1)/6) /In(4/5)
; 2m 3 2m

where K; is the t-th kernel matrix.
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Bounding MKL

@ This gives an overall bound on the generalisation of MKL of

P(y # sen(g(x)) ZE, - max tr(Ke) +

ym 1<t

8 [In(2(N+1)/6) /In(4/5)
; 2m 3 2m

where K; is the t-th kernel matrix.

@ Bound gives only a logarithmic dependence on the number of
kernels.
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Experimental results with large-scale MKL

@ Vedaldi et al. have applied to the PASCAL Visual Objects
Challenge (VOC 2007) data and
@ improvements over the winners of the challenge in 17 out of
the 20 categories
o in more than half of the categories the increase in average
precision was over 25%
@ have also scaled effectively to millions of kernels

* A. Vedaldi, V. Gulshan, M. Varma and A. Zisserman. Multiple kernels for
object detection. In Proceedings CVPR, Kyoto, Japan, September 2009.
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Linear Programming MKL

@ Column generation gives efficient MKL if we can pick the best
weak learner in each F; efficiently:

m m
sup Y wuiyif(xi) = sup > uiyi(w, de(x))
fer: i wiw| <177
m
= sup <W, > Uiy,'¢t(xi)>
w{|lwl||<1 i1

m
> uiyide(x)
i=1
= \/ u’YKtYu = Nt

easily computable from the kernel matrices (note that u is
sparse after first iteration and can also be chosen sparse at the
start).
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Linear Programming MKL

@ The optimal weak learner from F; is realised by the weight
vector that achieves the supremum

w— Doimy Uiyide(xi)
12210 uiyide(xi) |
which has dual representation:
1
Qj = ﬁtui}/i
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Linear Programming MKL

@ The optimal weak learner from F; is realised by the weight
vector that achieves the supremum

w— Doimy Uiyide(xi)
12210 uiyide(xi) |
which has dual representation:
1
Qj = ﬁtui}/i

@ Hence, can use the linear programming boosting approach to
implement multiple kernel learning.
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Frontiers of Machine Learning

@ Deep learning has (re-)emerged as having important research
and commercial value
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Frontiers of Machine Learning

@ Deep learning has (re-)emerged as having important research
and commercial value

@ Deep belief networks and related approaches have led this
charge
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Frontiers of Machine Learning

@ Deep learning has (re-)emerged as having important research
and commercial value

@ Deep belief networks and related approaches have led this
charge

@ Kernels are sometimes referred to as ‘shallow’
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Frontiers of Machine Learning

@ Deep learning has (re-)emerged as having important research
and commercial value

@ Deep belief networks and related approaches have led this
charge

@ Kernels are sometimes referred to as ‘shallow’

@ Now consider:

@ ways in which kernel approaches to learning has been made
‘deeper’
o possible integration of kernel and deep methods
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Why Shallow Learning?

@ Kernels learn non-linear functions in the input space so would
appear to be as flexible as deep learning systems
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Why Shallow Learning?

@ Kernels learn non-linear functions in the input space so would
appear to be as flexible as deep learning systems

@ However, they actually implement linear functions in the
kernel defined feature space:

X F—fixed P(X) mlearned (W, $(X))

so that the learning (of w) only occurs in one ‘layer’.
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Why Shallow Learning?

@ Kernels learn non-linear functions in the input space so would
appear to be as flexible as deep learning systems

@ However, they actually implement linear functions in the
kernel defined feature space:

X F—fixed P(X) mlearned (W, $(X))

so that the learning (of w) only occurs in one ‘layer’.

@ This is contrasted with deep learning where parameters are
spread across several layers typically with non-linear transfer
functions

¢ Learning of the deeper layers is often unsupervised with the
final classifier trained with the earlier layers fixed

o Hence, we are effectively pre-learning a representation — this
would be analogous to learning the kernel
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What happens in practice?

@ In practice we typically do perform some learning of the
kernel:

@ fix some hyper-parameters via some heuristic (e.g. width o of
a Gaussian kernel)

@ use cross-validation to adapt the hyperparameter to optimise
performance of the task (classification, regression, etc)
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What happens in practice?

@ In practice we typically do perform some learning of the
kernel:
@ fix some hyper-parameters via some heuristic (e.g. width o of
a Gaussian kernel)
@ use cross-validation to adapt the hyperparameter to optimise
performance of the task (classification, regression, etc)
@ In some respects this undermines the more principled approach
espoused by kernel methods based on generalisation bounds:
@ standard generalisation bounds no longer apply if we choose
the feature space based on the training data
@ even test set bounds will be invalidated if we include the
testing data in the representation learning phase
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What happens in practice?

@ In practice we typically do perform some learning of the
kernel:
@ fix some hyper-parameters via some heuristic (e.g. width o of
a Gaussian kernel)
@ use cross-validation to adapt the hyperparameter to optimise
performance of the task (classification, regression, etc)
@ In some respects this undermines the more principled approach
espoused by kernel methods based on generalisation bounds:
@ standard generalisation bounds no longer apply if we choose
the feature space based on the training data
@ even test set bounds will be invalidated if we include the
testing data in the representation learning phase
@ Often more sophisticated representations encode ‘deep’ prior
knowledge, but are ‘learned’ by trial and error
o for example the histograms of patch cluster presence used in
an object detection system
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Kernel defined features spaces

o Kernels define a feature space implicitly via a function (-, -)
that computes an inner product:

@ symmetric:

r(x,2) = (¢(x), ¢(2)) = (#(2), 6(x)) = K(2,x)

o kernel matrices are positive semi-definite:

uKu = ZU,UJ J)>
— <Zu;¢(x;),zuj¢(xj)>

Z uip(x;i)

i=1

>0
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Kernel functions

@ These two properties are all that is required for a kernel
function to be valid: symmetric and every kernel matrix is psd.
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Kernel functions

@ These two properties are all that is required for a kernel
function to be valid: symmetric and every kernel matrix is psd.
@ Implies that we can define kernels on virtually any objects

provided these properties are satisfied, eg documents, graphs,
networks, etc.
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Kernel functions

@ These two properties are all that is required for a kernel
function to be valid: symmetric and every kernel matrix is psd.
@ Implies that we can define kernels on virtually any objects

provided these properties are satisfied, eg documents, graphs,
networks, etc.

@ Many standard linear algorithms can be implemented in the
kernel defined feature space using a dual representation of the
weight vectors — typically requires regularisation of the 2-norm
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Kernel functions

@ These two properties are all that is required for a kernel
function to be valid: symmetric and every kernel matrix is psd.

@ Implies that we can define kernels on virtually any objects
provided these properties are satisfied, eg documents, graphs,
networks, etc.

@ Many standard linear algorithms can be implemented in the
kernel defined feature space using a dual representation of the
weight vectors — typically requires regularisation of the 2-norm

@ Examples: ridge regression, PCA, CCA, SVMs, etc.

Shawe-Taylor Frontiers of ML



Generating the feature space

Proof outline:

@ Define feature space as class of functions:

]—“:{Zam(x;,') :meN, x;€ X, aj €R, izl,...,m}
i=1
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Generating the feature space

Proof outline:

@ Define feature space as class of functions:
m
F = {Zam(x;,') :meN, x;eX, a; eR, i = 1,...,m}
i=1

@ Linear space with inner product defined by

<H(X> ')7 '%(27 )> = H(X> Z)
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Generating the feature space

Proof outline:

@ Define feature space as class of functions:
m
F = {Zam(x;,') :meN, x;eX, a; eR, i = 1,...,m}
i=1
@ Linear space with inner product defined by
<H(X> ')7 '%(27 )> = H(X> Z)

@ embedding given by
x — K(x, )
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Generating the feature space

Proof outline:
@ Define feature space as class of functions:

]—“:{Zam(x;,') :meN, x;€ X, aj €R, izl,...,m}
i=1

@ Linear space with inner product defined by
<H(X> ')7 '%(27 )> = H(X> Z)
@ embedding given by
x — K(x, )

@ Note reproducing property: for a function f € F
f(X) = <f7 /i(X, )>

so called Reproducing Kernel Hilbert Space (RKHS)
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Mean Embeddings

o If there is a distribution D on the input space it defines a
point up in the feature space:

pp = Exp[d(x)]
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Mean Embeddings

o If there is a distribution D on the input space it defines a
point up in the feature space:

pp = Exp[d(x)]

@ and its empirical counterpart for a finite sample S:

fis = Exs[o(x)] = E[o(x)]
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Mean Embeddings

o If there is a distribution D on the input space it defines a
point up in the feature space:

o = Exp[d(x)]
@ and its empirical counterpart for a finite sample S:
fis = Exvs[o(x)] = E[6(x)]

@ Surprisingly, despite their being no restriction on the
dimensionality of F, if D has support in the R ball, with
probability at least 1 — § over an iid sample S

R 1
— el < — [ 2 2In =
||,UD MSH = \/m ( + n 5)
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Mean Embeddings for Expectations

@ Since F is a space of functions, using the reproducing
property we can also estimate expectations for f € F

Exn[f(x)] = Exwp[(f, 9(x))] = (f, Exup[¢(X)]) = (f, up)
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Mean Embeddings for Expectations

@ Since F is a space of functions, using the reproducing
property we can also estimate expectations for f € F

Exn[f(x)] = Exwp[(f, 9(x))] = (f, Exup[¢(X)]) = (f, up)

@ similarly for its empirical counterpart and furthermore we can
bound the error of the empirical estimate:

Ex-plf ()] = E[f(x)]l = [(f,up) — (. fis)]
= |<f7:U‘D - ﬁ5>

IR 1
— 2 2ln =
v/m + n5

IN

Shawe-Taylor Frontiers of ML



Conditional Mean Embeddings

@ [t is natural to ask if we can generalise these ideas to
conditional distributions P(X|Y')
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@ [t is natural to ask if we can generalise these ideas to
conditional distributions P(X|Y')
@ Now the distribution and hence mean embedding is a function
of Y
ppxyy =mY) e F
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Conditional Mean Embeddings

@ [t is natural to ask if we can generalise these ideas to
conditional distributions P(X|Y')

@ Now the distribution and hence mean embedding is a function
of Y
ppxyy =mY) e F

@ Hence 1 : Y — F can be viewed as a regressor, albeit into a
Hilbert space.
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Reinforcement Learning (RL)

@ Reinforcement Learning models agents that learn through
acting in an environment and receiving reward
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Reinforcement Learning (RL)

@ Reinforcement Learning models agents that learn through
acting in an environment and receiving reward
@ AKA Markov Decision Processes:

set of states S

set of actions A

Markov transition kernel P(s'|s, a)
reward function r : S x A — [0, 1])
and discount 0 < v < 1

¢ € ¢ ¢ @
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Reinforcement Learning (RL)

@ Reinforcement Learning models agents that learn through
acting in an environment and receiving reward

@ AKA Markov Decision Processes:

set of states S

set of actions A

Markov transition kernel P(s'|s, a)

reward function r : S x A — [0, 1])

and discount 0 < v < 1

¢ € ¢ ¢ @

@ Agent has to select a policy 7: S — P(A)
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Experience in RL

@ Agent experience: £ = (51,A1,5,A2,...)
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Experience in RL

@ Agent experience: £ = (51,A1,5,A2,...)
[+ S]_ ~ P]_, At ~ W(St), St+1 ~ P(|St,At)

@ Expected return:

J(r) =E

Z 'Yt_lr(st, At)‘ﬂ']
t=1
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Experience in RL

@ Agent experience: £ = (51,A1,5,A2,...)
[+ S]_ ~ P]_, At ~ W(St), St+1 ~ P(|St,At)
@ Expected return:

=E

Z 'Yt_lr(st, At)‘ﬂ']
t=1

@ Value function:

[Zv r(S¢,Ae)|S1=s w]
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Experience in RL

@ Agent experience: £ = (51,A1,5,A2,...)
[+ S]_ ~ P]_, At ~ W(St), St+1 ~ P(|St,At)

@ Expected return:

J(r) =E

Z 'Yt_lr(st, At)‘ﬂ']
t=1

@ Value function:
VT(s) =E [Z vt_lr(St,At)|51 = s,w]
t=1

@ Action Value function:

Q"(s,a) =r(s,a) + 1Esp(s,a) [VT(S)]
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Bellman Equation

@ V™ satisfies the Bellman equation

V™(s) = Eawn(s) [(s, A) + 1Esiwp(is,m V(S]]
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@ V™ satisfies the Bellman equation

V™(s) = Eawn(s) [(s, A) + 1Esiwp(is,m V(S]]

@ T7 is the Bellman operator mapping V to T™V

(TTV)(s) = Eaur(s) [r(5,A) +7Eswp(s,4)[V(S)]]
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Bellman Equation

@ V™ satisfies the Bellman equation

V™(s) = Eawn(s) [(s, A) + 1Esiwp(is,m V(S]]

@ T7 is the Bellman operator mapping V to T™V

(TTV)(s) = Eaur(s) [r(5,A) +7Eswp(s,4)[V(S)]]

@ The optimal policy satisfies: V*(s) = sup,cpn V7 (s)
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Bellman Equation

@ V™ satisfies the Bellman equation
V™(s) = Eawn(s) [r(5,A) + 1Esiwp(1s,a)[ V7 (S)]]
@ T7 is the Bellman operator mapping V to T™V
(TTV)(s) = Eaur(s) [r(5,A) +7Eswp(s,4)[V(S)]]

@ The optimal policy satisfies: V*(s) = sup,cpn V7 (s)
@ The optimal policy can be computed by value iteration, policy
iteration or dynamic programming
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Linear representations of the Value function

@ Can assume a linear form for V™

V7(s) = (wr, ¢(s))
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@ Can assume a linear form for V™

V7(s) = (wr, ¢(s))

@ then solving the Bellman equation means finding w; such that

(W, §(5)) = r(s,7(s)) + YEs wp(|s.n(s)) [ (W, D(S))]
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Linear representations of the Value function

@ Can assume a linear form for V™

V7(s) = (wr, ¢(s))

@ then solving the Bellman equation means finding w; such that

(W, §(5)) = r(s,7(s)) + YEs wp(|s.n(s)) [ (W, D(S))]

@ Building a model of the dynamics makes it possible to solve
this
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Linear representations of the Value function

@ Can assume a linear form for V™:
V7(s) = (wr, ¢(s))
@ then solving the Bellman equation means finding w; such that
(Wr, ¢(5)) = r(s,7(5)) + VEswp(|s.n(s)) [(Wns &(S))]

@ Building a model of the dynamics makes it possible to solve
this

@ Using CMEs gives a clean way of computing the expectations
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CMEs 4 RL

@ Recall if V(s) = (v, ¢(s)) then

Esip(is.s) [V(S)] = (v, Esip(isa) [9(S)])




CMEs 4 RL

@ Recall if V(s) = (v, ¢(s)) then

Esip(is.s) [V(S)] = (v, Esip(isa) [9(S)])

@ Hence we need 4 : S x A — F

(s, a) = ES/NP('|573) [gb(s/)]
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CMEs 4 RL

@ Recall if V(s) = (v, ¢(s)) then

Esip(is.s) [V(S)] = (v, Esip(isa) [9(S)])

@ Hence we need 4 : S x A — F

(s, a) = ES/NP('|573) [gb(s/)]

@ We learn regressor [i using training loss
m
1
2
loss(fi) = — g A(si, ai) — o(si)l
m f—

where training data is {(s;, a;,s/) : i =1,...,m}
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CMEs 4 RL

@ Solution has the form fi(s,a) = > ai(s, a)p(s!)
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CMEs 4 RL

@ Solution has the form fi(s,a) = > ai(s, a)p(s!)

@ Hence

E, [V(S)] = (A(s, a), v Za, s,a) afs,a) v
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CMEs 4 RL

@ Solution has the form fi(s,a) = > ai(s, a)p(s!)

@ Hence
a [V(S)] = (als,a), v Za, s,a) a(s,a) v

@ So Bellman equation becomes a linear system on the vector v
v=r+~vAv

where r = IEANW(Si)r(s,-, A) and Aj = EANW(Si)[aj(s;, Al
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@ Solution has the form fi(s,a) = > ai(s, a)p(s!)

@ Hence
a [V(S)] = (als,a), v Za, s,a) a(s,a) v

@ So Bellman equation becomes a linear system on the vector v
v=r+~vAv

where r = IEANW(Si)r(s,-, A) and Aj = EANW(Si)[aj(s;, Al
@ so reduced to finite MDP
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CMEs 4 RL

@ Solution has the form fi(s,a) = > ai(s, a)p(s!)

@ Hence
a [V(S)] = (als,a), v Za, s,a) a(s,a) v

@ So Bellman equation becomes a linear system on the vector v
v=r+~vAv

where r = IEANW(Si)r(s,-, A) and Aj = EANW(Si)[aj(s;, Al
@ so reduced to finite MDP

@ Size of the MDP rapidly becomes infeasible - so now turn to
methods to control the number of states
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Greedy compression set

augmentCompressionSet(C,d, P)

Input: Initial compression set C = ¢, ..., ¢y, candidates
P =s],...,sp, tolerance &
for j=1,2,...,ndo
if minpernm,|jpj, <1/ 22721 bid(ci) = &(s))||7 >0 then
Augment compression set: C < C U sjf, m<+— m+1
end if

end for
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Greedy compression set

augmentCompressionSet(C,d, P)
Input: Initial compression set C = ¢, ..., ¢y, candidates
P =s],...,sp, tolerance &

for j=1,2,...,ndo
if minpernm,|jpj, <1/ 22721 bid(ci) = &(s))||7 >0 then
Augment compression set: C < C U sjf, m<+— m+1
end if
end for

@ For learning the « coefficients:

m

aj(s7 a) = Z K((57 a)? (Sf7 al))VVI

i=1

we have a regression problem — again with high complexity —
turn to matching pursuit
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Matching pursuit

@ Matching pursuit greedily chooses training examples that
determine directions in feature space that are well-suited to
some task and then deflates
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Matching pursuit

@ Matching pursuit greedily chooses training examples that
determine directions in feature space that are well-suited to
some task and then deflates

@ Analysis combining sparse reconstruction with generalisation
error bounds gives first bounds on performance in learnt
subspace
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Matching pursuit

@ Matching pursuit greedily chooses training examples that
determine directions in feature space that are well-suited to
some task and then deflates

@ Analysis combining sparse reconstruction with generalisation
error bounds gives first bounds on performance in learnt
subspace

@ Allows different criteria for selection to be implemented in one
framework, eg sparse PCA, classification, regression, canonical
correlation analysis, etc. and all come with bounds

* Hussain, Z., Shawe-Taylor, J., Hardoon, D.R. and Dhanjal, C (2011)
Design and Generalization Analysis of Orthogonal Matching Pursuit
Algorithms, IEEE Trans on Information Theory, 57, 5326-5341.
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Matching pursuit for KCCA

Require: two views K, K, and sparsity parameter k > 0.
1. initialise index vector i = [ | and an all one vector 1 .
2: for i=1to k do

_ . . KK
3:  seti; to index of max; 7@[’_7[]@[[7[]
4. set T = Ki[;,i;] and 7, = K, [1,i;] to deflate kernel
matrices:
/
T (T K
Kx — KX _ X ( /X X)
T, Ty
/
. Ty (TyKY)
Ky - Ky - /
T Ty
5: end for

6: solve KCCA on points indexed by final i to find &, and &, the
duals of the projection vectors.
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Matching pursuit bound plot

SKCCA error on English—Spanish text data set
1.6 T T T T T

bound
SKCCA test error

Loss

02 L L I I I I I I I
0 10 20 30 40 60 70 80 90 100

50
Level of sparsity

Figure: Bound plot for sparse KCCA using 1-dimension.
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Policy iteration with Compressed kernel CMEs

for k=1,2,... do

Ck = augmentCompressmnSet(Ck 1,{s/}*

Gk = Br—1 U{K (-, (si,a1)) X~ M_1+1

Sparse basis selection: Learn sparse basis

By = {K(, (§g,é\g))}gil, dx < d from candidates Gy using

matching pursuit; Set ¥f(-) = K((5, 4¢), ),

Wy, = (V*(s1,a1), ..., Y (s"k7a”k))T'

WCMP (wka + )\K) lw;(FLDC(LCC)—l

for (=1,2,...,J do
Policy evaluation: Using finite pseudo-MDP dynamics
aPtMP(c; a) for a € A, ¢; € C solve approximate Bellman
Equation to obtain estimate V; of V& at the compression
points ¢; € C. Set

~ C ~
Quls,3) = r(s,3) + 7 )2 oL MP(s,2) V().
Policy improvement: 7, < greedy((:?g).

end for
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Experiments: Cart-pole benchmark

Simulated under-actuated cart-pole swing-up benchmark problem
o S=R? s=(6,6), A=[-50,50], horizontal force in newtons

Cart-pole Experiment Results

H/f: = N

ﬂ%/\f

&

5 & &

*
il {/ 3
5l
2 1
vV [" 15
b 10

—KBRL
kemel least squares CME
Compressed CME

3 8 10 12 14 16
Training Iterations

cumulative discounted reward

@
O
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Experiments: Quadrocopter Simulator

Simulator calibrated to model the dynamics of Pelican™

quadrocopter platforms o
S C R13' S = (X7y7279¢7¢75<7}772'797¢7¢7F)
A C R3 represents desired velocity vectors, PID controller
translates into low level commands
Tasks:
@ Navigation: platform must navigate to point
@ Holding pattern: platform must stay in circle and maintain
minimum velocity
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Experiments: Quadrocopter Results

Quadrocopter Experiment Results

=
&

=
5

w
®

w
=]

W
o]

N
5]

7 ——KBRL
5 kemel least squares CME
Compressed CME

cumulative discounted reward

4 é 8 10 12 1‘4
Training Iterations

Figure: Quadrocopter tasks: navigation and holding pattern

RKHS controller better in high-dim. state-space

Shawe-Taylor Frontiers of ML



Experiments: Quadrocopter Results

Quadrocopter Experiment Results

NN oW oW s o=
85 R 8 8] 8 &

@

=

——KBRL
kemel least squares CME
Compressed CME

cumulative discounted reward

o ;

2 12 14

o

4 é 8 10
Training Iterations
Figure: Quadrocopter tasks: navigation and holding pattern

RKHS controller better in high-dim. state-space

o Attempts to obtain similar results with deep learning have
extended the flexibility and scaling of the method, albeit at
the expense of requiring more training iterations.
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Deep Learning models

@ Deep learning models allow learning more complex models
through multiple layers of parameters
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Deep Learning models

@ Deep learning models allow learning more complex models
through multiple layers of parameters

@ This means that the optimisation space is no longer convex
and typically the problem is cast as seeking a local minimum
through (stochastic) gradient descent
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Deep Learning models

@ Deep learning models allow learning more complex models
through multiple layers of parameters

@ This means that the optimisation space is no longer convex
and typically the problem is cast as seeking a local minimum
through (stochastic) gradient descent

@ Remarkably the generalisation performance does not seem to
be adversely affected by using such flexible models
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Deep Learning models

@ Deep learning models allow learning more complex models
through multiple layers of parameters

@ This means that the optimisation space is no longer convex
and typically the problem is cast as seeking a local minimum
through (stochastic) gradient descent

@ Remarkably the generalisation performance does not seem to
be adversely affected by using such flexible models

@ Understanding what underpins this good performance is the
subject of current theoretical studies
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@ Stochastic Gradient Descent uses mini-batches to derive noisy
gradient estimates
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@ Stochastic Gradient Descent uses mini-batches to derive noisy
gradient estimates

@ Simplest approach is average of gradients, but can include
longer averages
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gradient estimates

@ Simplest approach is average of gradients, but can include
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@ Conjugate gradient methods exploit second order information
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@ Stochastic Gradient Descent uses mini-batches to derive noisy
gradient estimates

@ Simplest approach is average of gradients, but can include
longer averages

@ Conjugate gradient methods exploit second order information

@ Can more be extracted from mini-batch gradients exploiting
the fact that they represent an i.i.d. sample of the data
distribution?
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@ View weight update direction as a classifier of the mini-batch:
correct classification if reducing its error, incorrect if
increasing its error
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@ View weight update direction as a classifier of the mini-batch:
correct classification if reducing its error, incorrect if
increasing its error

@ This is ignoring second order effects: i.e. for small weight
updates will hold

fj(w + ow, x;) ~ fj(w,x,-) + (dw, ij(w,x,-)>
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@ View weight update direction as a classifier of the mini-batch:
correct classification if reducing its error, incorrect if
increasing its error

@ This is ignoring second order effects: i.e. for small weight
updates will hold

fj(w + ow, x;) ~ fj(w,x,-) + (dw, ij(w,x,-)>

@ Have a target reduction of €

@ In order to minimise second order effects, we need to choose a
minimum norm update that has the desired error reductions
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@ View weight update direction as a classifier of the mini-batch:
correct classification if reducing its error, incorrect if
increasing its error

@ This is ignoring second order effects: i.e. for small weight
updates will hold

fj(w + ow, x;) ~ fj(w,x,-) + (dw, ij(w,x,-)>

@ Have a target reduction of €

@ In order to minimise second order effects, we need to choose a
minimum norm update that has the desired error reductions

@ this can be translated into an optimisation that needs to be
solved
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Update optimisation to choose dw

1: Minimise 3 |[ow|[2 + cz,@ py
2: Subject to: yji(ow, VA (w,x;)) > e—§; & >0,
i=1,...,6j=1,... K
this is an SVM optimisation (with target margin e).

The dual optimisation is

1 Max e} ;v — 1 > ikt i i ((XisJ)s (xic, 1)
2: Subject to: C > a;; >0

where k((x;, /), (xk, 1)) = (VF(w,x;), VF(w,x,))
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@ Since data generated iid, can use generalisation bounds to
analyse the effects of the weight update
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@ Since data generated iid, can use generalisation bounds to
analyse the effects of the weight update

@ The following bound holds

Bollc yylow TP ] £ A= L3t
i

+4H2N”\/W+3 /'n(22£/5)
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@ Since data generated iid, can use generalisation bounds to
analyse the effects of the weight update

@ The following bound holds

Bollc yylow TP ] £ A= L3t
i

+4H2N”\/W+3 /'n(22£/5)

@ Hence, ignoring second order effects, for an néw weight
update, the average hinge loss across the whole training (and
test) set will with high probability reduce by at least

n(e—A)
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Optimization

n =0.1; r = 1.0; £ = initial batch size
for i €[1,2,---  num_iter] do
Bs < generateMinibatches(D, /)
dw < trainMinibatch(Bs, C, r)
bound_term = ||éw||\/tr(K)/¢
while bound_term > threshold do
{ < 2*/( F#minibatch size
r< 0.1xr #SVM Regularizer
Bs < generateMinibatches(D, /)
Ow < trainMinibatch(Bs, C, r)

bound_term = ||dw||\/tr(K)/¢

end while

W — W+ 1) % 0w
end for
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@ MNIST: It consists of images of handwritten digits in binary.
It has a training set of 60,000 examples, and a test set of
10,000 examples.

@ CIFAR-10: It consists of 60000 32x32 colour images in 10
classes, with 6000 images per class.
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Convergence

0.9 0.8
+— SGD-update
0.8 e—e SVM-update 07 e—e SVM-update
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Figure: Left: MNIST & Right: CIFAR. We plot the hinge loss over train
set versus epochs.
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Accuracy

14 +— SGD-update 14
o—e SVM-update
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Figure: Left: MNIST & Right: CIFAR. We plot the training accuracy
over the entire train set versus epochs.
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Generalization

14 +— SGD-update
e—e SVM-update

Validation Accuracy
=

03 0.0
[0 10 ) 2.0 22 4 20 30 0 5

Ny Epochs

Figure: Left: We see that the ratio of decrease in loss over train set and
mini-batch decreases with increase in the bound, implying that the
updates become less generalized. Right: We observe that the validation
accuracy initially increases and then stabilizes for mnist using our
algorithm, as opposed to sgd.
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Robustness: Adversarial Noise

MNIST CIFAR
Norm sgd-based | svm-based | sgd-based | svm-based
frobenius 5.12 7.32 7.95 9.25
infinity 5.90 8.11 6.50 8.57
nuclear 7.29 8.11 8.50 9.12
1-norm 6.23 7.59 7.40 9.10

Table: We give details of the additive adversarial noise learned for left:
MNIST and right: CIFAR using traditional back-propagation and
svm-based updates. Additive adversarial noise is the minimum amount of
noise to be added to images such that the network misclassifies them.
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Summary and Conclusions

@ Introduction to pattern analysis and machine learning through
the perspective of kernel methods
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Summary and Conclusions

@ Introduction to pattern analysis and machine learning through
the perspective of kernel methods

@ Emphasis on the need to assess and improve generalisation:
analysis provided through Radmacher Complexity

@ Attempts to use principled methods for complex tasks such as
Reinforcement Learning have met with considerable success

@ Deep learning follows similar principles of fitting data, but
appears to exhibit a remarkable resistance to overfitting when
trained using stochastic gradient descent and variants thereof.

Shawe-Taylor Frontiers of ML



