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"How can the universe start with a few types of 
elementary particles at the big bang, and end up 
with life, history, economics, and literature? The 
question is screaming out to be answered but it is 
seldom even asked. Why did the big bang not 
form a simple gas of particles or condense into 
one big crystal? We see complex phenomena 
around us so often that we take for granted 
without looking for further explanation. In fact, 
until recently very little scientific effort was 
devoted to understanding why nature is 
complex.”

Per Bak, 1997



Complexity:
Inhomogeneity in space

Inhomogeneity in time:

Fractal objects:

“Fractal” time series



Self-organized criticality

Sandpile model: emergence of scaling in driven 
systems

Slope is maintained 
constant with 
avalanches of 
inhomogeneous 
sizes and durations
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Cellular automaton model

 

z(x,y) →z(x,y) +1

z(x,y) →z(x,y) − 4

z(x 1,y) →z(x 1,y) +1

z(x,y 1) →z(x,y 1) +1

Adding a grain

Toppling

At the boundary grains
get lost



s: size of avalanche
Similar power law
for duration

Non-trivial, scaling behavior also on complex 
networks (if threshold is dependent on ki).  
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Interacting systems
In the above (network) models temporal 
heterogeneity results from interaction. There are 
units, which interact and result in complex behavior

The units are not always simple (but we hope that  
details are unimportant):
- Earthquakes (complex material processes) → GR 

law
- Solar flares (magneto-hydrodynamic processes)

universal scaling distributions
- Neural activity (electrochemistry of cells) → scaling 

distributions
- Economy (including human agents) → price 

changes



Human communication

Interaction between people + human nature 

Take a “simpler” view: Consider temporal pattern at 
single persons (nodes in the communication 
network) and calculate average behavior over many.

Simple model: Poissonian
(used until recently to design telephone crossbar 
capacities)
Advantage: A single parameter is enough
Disadvantage: Totally wrong



Poisson process

Events are separated by tie inter-event times with 
the independent distribution

 

P(tie ) = e−tie

 

P(N ) = e− ()N

N!

The expectation value of the number of events in 
an interval τ has a Poisson distribution:

Homogeneous Poisson process

If λ depends on t

 

P(N) = e− ba
(ba)

N

N!

 

ba = (t)dt
a

b

with

Non-homogeneous Poisson process
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Poissonian vs bursty activity



Many bursty phenomena in 
human behavior and Nature

But MANY processes are not 
•Human communication pattern
• Solar flares
• Earthquakes
• Price changes above threshold
• neuron firing
• etc.  

Examples for Poisson process include:
- radioactive decay
- low density road traffic
- light bulbs burning out



Correspondence
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Barabási model

task priority

1 x1

2 x2

3 x3

4 x4

5 x5

6 x6

… …

L xL

Priority list

Model: 
a) Pick the task with 

highest priority with 
probability p or 
randomly one with
1- p and execute it

b)  generate a new task 
with a random 
priority
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waiting ≠ inter-event time 

Two types of tasks…



Info-communication data

Email Barabási 2005 Karsai et al. 2012

Power law 
valid only 
within a day

α close to 1

Measured are the inter-event times, not the waiting 
times.



Priority arranged list model

1 2 3 4 5 6 i N

Bursty behavior consists of excited (active) and 
normal periods. I.e., there is some persistence.

a) Choose task i with probability wi ~ i-σ

b) Put task i to position 1
c) Shift all tasks 1→ i-1 by one to the right

i 1 2 3 4 5 6 i-1

There are 2 kinds of tasks: A and B → inter-event times 



Markovian property

ABAABBAAAAB…
AABAABBAAAB…
BAABAABAAAB…

Master equation
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Solution for the inter-event time

There is only one A task
qn(t) is the prob. that A is at n at time t for the first 
time.

is the prob. not to recur until t and the
prob. of first recurrence at t is
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Introducing discrete Laplace transformation
and using the form of wi we get 

Applying to both sides

which has the scaling solution 
for small λ:

 

(,t) = t
1


−1

 t
1


 

 
 

 

 
 

leading to

 

P(tie ) ~ t
−(2−

1


)



Renewal processes

Stochastic process of instanteneous events 
separated by random IID inter-event times τ, 
distributed according to Pie(τ).
Generalization of the Poisson process, where
Pie(τ)=exp(-aτ)/a

Autocorrelation function

where X(t) is the 
indicator of the event 



Scaling law for renewal processes
For a renewal process with power law tailed inter-
event time we have with a 
scaling law: 

  

 

g() = e−t A(t) =
t =0



 e−tP(t = 0,1,2,...,m,... ) =
t =0





= E(e− m ) =
m=0



 E(e−( + '+ ''+...+ ( m) )) =
m=0



 E(e− ) 
m

=
m=0





= 1−E(e− )( )
−1

The Laplace transform of A(t) can be expressed by that of Pie(t)  

(*)

From which (*) follows via Tauber theorems
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Empirical results for the priority list model

α=2-𝛽= 1/σ perfectly verified



Empirical autocorrelation function

A(t)-s also decay as power law! 

phone calls SMS Email
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α 𝜷 α+𝜷

Phone calls 0.5 0.7 1.2

SMS 0.6 0.7 1.3

Emails 0.7 1.0 1.7

α + 𝛽 < 2, i.e. the process is NOT a renewal one,
there is dependence between the events.

Renewal processes?



α β α’ α’+β

Phone calls 0.5 0.7 1.1 1.8

SMS 0.6 0.7 1.2 1.8

Emails 0.7 1.0 0.8 1.8

α + 𝛽 < 2, i.e. the process is NOT a renewal one,
there is dependence between the events.

If shouffled, α’+𝛽 ~ 1.8, much closer to the 
scaling law holds

Renewal processes?



Measuring dependence
Bursty behavior means that there are high activity 

periods separated by low activity ones

We define a „bursty period” relative to a window 

Δt:

A bursty period (or train of bursts) is a sequence of 

events separated from the rest by empty periods 

of at least Δt lengths. 

Δt Δt

Calculate the distribution P(E) of the number E 

of events within the trains



For any independent inter-event time distribution P(E) 

decays exponentially: 

 

P(E = n) ~ P()d
0

t


 

 
 

 

 
 

n

= e−an

Empirical results show  the 

presence of intrisic correlations.

We find: 

The P(E) distribution measures dependence

ϒ

β
α β γ

Phone calls 0.5 0.7 4.1

SMS 0.6 0.7 3.9

Emails 0.7 1.0 2.5

 

P(E) ~ E −



Relation to memory
Power law P(E) shows: the process is non-Markovian:
Memory
p(n) is the prob. that a bursty train, which has 
already the length n will get longer.

Assuming perfect power
law behavior for P(E) leads

 

p(n) =
n

n +1

 

 
 

 

 
 

 −1

Persistence in human behavior
(Also: earthquakes, neuron firing) M
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Can we construct a model for all features?

Modeling

Two state model:
A normal state - it performs independent events 
with relatively long inter-event times
B excited state - it performs correlated bursty
events with relatively short inter-event times



Inter-event times are generated by reinforcement 
processes 
• the longer an entity waits after an event, the larger 
the probability it will wait longer (see Stehlé, et al. 
PRE (2010)). 
• Here the inter-event time of an event depends on 
the actual state
• Different reinforcement functions for state A and B

If μA <<  μB long bursty trains develop. 𝛽=μ+1



Other systems

Very different 
systems show similar 
behavior (weak 
universality, 
exponents are 
different)

Is there a common 
mechanism behind?

Threshold
phenomena



Measuring burstiness

How to measure burstiness? 
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with mτ being the mean and στ the variance of the 
empirical  inter-event distribution.
B = 0 for Poisson distribution
B = -1 for delta distribution
B = 1 if the second moment diverges 

The larger B > 0 the more bursty



Circadian pattern

Activity pattern for mobile phone data
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How is this related to the observed burstiness?

Is there “intrinsic” burstiness? Deseasoning



Rescaling time
where c(t) is the event 
density at t, CT is the 
average density over 
period T

There is still circadian pattern observed!



Activity classes

When averaging over the whole sample, we mix a 
very inhomogeneous sample 

Pattern is almost entirely removed!

Introduce classes of activities and do the rescaling 
on them. 



Power spectrum



Rescaled inter-event times



Burstiness

Distribution 
of B for an 
activity class 
of users 

De-seasoning: 
-little effect on the total B
-scaling improves
There is intrinsic burstiness
related to human task 
execution



Burstiness and conflicts in Wikpedia edits
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WP is a collaborative, free, WEB-based, 
multilingual encyclopedia written by 
volunteers from all around the world.

Fully recorded: Every single edit, discussion, 
interaction – the full history of a (special) 
society.

What is the mechanism of arriving at a consensus in 
a collaborative environment? 

Mostly constructive activity, sometimes conflicts, 
edit wars.



Identification of conflicts

George W. Bush
Anarchism
Muhammad
Circumcision
Race and intelligence
Global warming
United States
Barack Obama
Jesus
Christianity
Michael Jackson

English WP 2011
most controversial articles

𝑀 = 𝐸 × ෍

𝑖,𝑗 ∈reverters
∖max pair

min 𝑁𝑖
𝑑 , 𝑁𝑗

𝑟

𝐸: total # of reverting editors
(larger army → worse war)

𝑁𝑖
𝑑(𝑁𝑗

𝑟): # of reverts of reverted(r)

(more mature editors → worse war
\ max pair: Avoid conflict btw 2 persons



Edit frequency



Burstiness

A CB

All edits Reverts Mutual reverts



Inter-event time distribution

Conflict articles Normal articles



DYNAMICS OF SPREADING IN A COMMUNICATION NETWORK

Spreading phenomena in networks

- epidemics (bio- and computer)

- social contagion (rumors, information, opinion, innovation)

Difference in the transmission: 
Epidemics (in simple cases, like influensa) – binary
Social contagion: complex (multiple nodes participate)



Epidemic spreading theory

Epidemic spreading among individuals

Different states – compartments:

- Susceptible 

- Infected 

- Recovered (immune)

- Exposed (infected but not yet infecting)

Resulting in different models in the spirit of 

reaction-diffusion processes, e.g., 𝑆 + 𝐼 → 2𝐼 (SI model).

𝛽, 𝜇, 𝜂, 𝛾 are rates by which the reactions happen. In the  simplest case 

“homogeneous or perfect mixing” is assumed:  Everybody can meet 

everybody with the probability  proportional to the concentrations 

(mean field approximation).

In simple cases solvable, epidemic threshold, relation to percolation.

Pastor-Satorras et al. Rev. Mod. Phys. (2015)



Spreading curve for SI (simplest model)

Early

Late

Intermediate

m(t)=Ninf /Ntot

DYNAMICS OF SPREADING IN MOBILE 
COMMUNICATION NETWORK

Important: speed of spreading



Aggregate network

Granovetterian structure: Strength of week ties



Consequence of the Granovetterian structure:
Strongly wired communities slow down spreading.
Simulation: SI model with hopping rates pij

(1) Empirical: pij  wij

(2) Reference: pij  <w>

DYNAMICS OF SPREADING IN MOBILE 
COMMUNICATION NETWORK

Reference

”Empirical”

Information gets trapped 
in the communities



The process is in reality non-Poissonian! Inhomogeneities not 

only in the topology but also in the temporal behavior (remember

the movie!)

DYNAMICS OF SPREADING IN A TEMPORAL NETWORK

Characterizing inhomogeneities

306 million mobile call records of 4.9 million

individuals during 4 months with 1s resolution

M.Karsai et al. Phys. Rev. E83, 025102 (2011) 

• Burstiness (fat tailed inter-event time distribution)
• Circadian, weekly pattern
• Triggered activity, temporal motifs



Calls are non-Poissonian

Scaled inter-event time distr.
Binned according to weights (here: number of calls)

Inset: time shuffled 

DYNAMICS OF SPREADING IN MOBILE 
COMMUNICATION NETWORK



Average user

Busy user

Note the different scales

Bursty call patterns for individual users 

DYNAMICS OF SPREADING IN MOBILE 
COMMUNICATION NETWORK 



DYNAMICS OF SPREADING IN MOBILE 
COMMUNICATION NETWORK 

Correlations influence spreading speed

-Topology (community structure)

- Weight-topology (Granovetterian structure)

- Daily, weekly patterns

- Bursty dynamics

- Link-link dynamic correlations

days

Can be eliminated by inhom. 
scale transformation



Triggered calls, cascades, etc.
Temporal motifs

Experiment: ”Infect” a random node and assume that 
”infection” is transmitted by each call (SI).
How to identify the effect of the different correlations on 
spreading?
Introduce different null models by appropriate shuffling of 
the data.

DYNAMICS OF SPREADING IN MOBILE 
COMMUNICATION NETWORK 

- Link-link dynamic correlations



Correlations: CS: community structure
WT: Weight-topology
BD: Bursty dynamics
LL: Link-link correlations

Original network









Time shuffling

Link1 Link2 Link3... LinkN

t11 t21 t31... tN1
t12 t22 t32... tN2
. . . .

. . t3n_3.... .

t1n_1 . .

t2n_2 .

tNn_N

Destroyes  burstiness (and link-link correlations) 
but keeps weight and daily pattern





DYNAMICS OF SPREADING IN MOBILE 
COMMUNICATION NETWORK 

Strong slowing down due to

- topology (communities)

- link-topology correlations

- burstiness

Minor effect:

- circadian etc. patterns

- temporal motifs

Results:

Small but slow world



Effect of burstiness

• Empirically: Slowing down

• Analytical model (Infinite complete graph, 
Cayley tree): speeding up!

• Clean numerical models (ER, BA): Mostly 
speeding up, but:

- Model calculations for pure power law inter-
event time distributions

- CORRELATIONS (in addition to power law 
inter-event times)

- NON-STATIONARITY!
Karsai et al. Sci. Rep. 2012
Horvath and JK: NJP 2014
Jo et al. PRX 2014



Spreading: Spatiotemporal process

Mobility pattern 
in West Africa as 
mapped out by 
cell phones 

Successful efforts to simulate epidemic spreading 
real time → prediction
Mobility and demographic data should be included.
Vespignani group (Northeastern+ISI Torino)



Social contagion



Similarities and Differences

Network Transmission External influence

Physics systems Lattice or amorphous Contact External field

Biological epidemics Social Contact None

Social contagion Social Social pressure Media

Complex contagion process

(D. J. Daley, D. G. Kendall, Epidemics and rumours. Nature 204, 1118 (1964))



Cascading Phenomena
Complex social contagion can be surprisingly fast. A triggering
perturbation may release rapid spreading. 

Examples: 

Rumor (e.g., false Hungarian nuclear breakdown 2002) 

Political movements (Arab spring 2011)

Innovation: Twitter

Granovetter (Am. J. Sociology 1978) Threshold models

D. Watts (PNAS 2002) Mathematical form



Threshold Model

Random network with degree distribution 𝑝𝑘
and average degree 𝑘 = 𝑧. Every node i has a 
threshold 𝜙𝑖 indicating the critical ratio of 
adopting neighbors needed to make the node 
adopting.

There are vulnerable nodes, which get infected if 
they have one adopting neighbor: 𝜙 ≤ 1/k.

The others are stable.

The phase diagram can be calculated.



Cascade windows for the threshold model. 

Watts D J PNAS 2002;99:5766-5771

©2002 by National Academy of Sciences

Fragmentation, second order transition

First order tr.

(ER graph)



Cumulative distributions of cascade sizes at the lower and upper critical points, for n = 1,000 

and z = 1.05 (open squares) and z = 6.14 (solid circles), respectively. 

Watts D J PNAS 2002;99:5766-5771

©2002 by National Academy of Sciences



% US 
Housholds

Adoption speed can be very different for different innovations

http://www.nytimes.com/imagepages/2008/0
2/10/opinion/10op.graphic.ready.html



In the Watts model the criteria for a dynamic process (cascades) is 
traced back to a static problem, the existence of the percolating 
vulnerable cluster. 

Incomplete picture:
1. There are more than one spontaneous innovators 
due to external information(Korniss et al. 2013) (Still static.)
2. Some nodes are blocked. Some people are reluctant to 
adopt (have a satisfactory service, have some reasons on 
principle etc.) (still static)
3. There are spontaneous innovators appearing 
External information flows continuously (intrinsically dynamic)

Generalized Watts Model



Blocked Nodes

Nodes are blocked with probability r (quenched disorder).
Blocked nodes make it more difficult to fulfil the threshold 
criterion.
The problem can be solved similarly to the original Watts case, 
with the generating function method.
The result is a three-dimensional phase diagram: 

ER graph with average degree z, 
uniform threshold 𝜙 and 
blocking probability r.



3D Phase Diagram

For Erdős-Rényi graph 𝑝𝑘 is Poisson, parametrized by z.
Assuming uniform 𝜙 with 𝑘𝑐 = 1/𝜙



Spontaneous Adopters + Blocked Nodes

ER,  𝑧 = 7, 𝜙 = 0.2, 𝑝 = 5 × 10−4

1 − 𝑟



spontaneous induced

Spontaneous vs. Induced Adoption



Normalized
adopter density

Evolution of Adopter Density

ER ,  𝑧 = 7, 𝜙 = 0.2, 𝑝 = 5 × 10−4

Different mechnisms?

𝑟∗ = 1 − 1/z = 0.86 is the percolation threshold

Is there an 𝒓× < 𝒓∗ where the kinetics changes? 



Node types

blocked

spontaneous
adopter

vulnerable
adopter

stable
adopter

cluster of 
induced
adopters

𝜙 = 0.2



scenario I

Distribution of Induced Clusters (𝑟 < 𝑟×)

𝑟 = 0.5, 𝑧 = 7, 𝜙 = 0.2, 𝑝 = 5 × 10−4



Distribution of Induced Clusters (𝑟× < 𝑟 < 𝑟∗)

scenario II

𝑟 = 0.78, 𝑧 = 7, 𝜙 = 0.2, 𝑝 = 5 × 10−4

𝑟∗ = 0.86



scenario at crossover

Distribution of Induced Clusters (𝑟 ~ 𝑟×)

𝑟 = 0.73, 𝑧 = 7, 𝜙 = 0.2, 𝑝 = 5 × 10−4



𝑟∗ = 1 − 1/𝑧 = 0.86

percolation threshold 

Asymptotic Distribution of Induced Clusters

𝑧 = 7, 𝜙 = 0.2, 𝑝 = 5 × 10−4, 𝑡 = 5000

Ruan, et al. PRL 2016



Information about:
- Basic service 

network
- Adoption of 

additional 
services

- Data about 
location (IP)

Instead of Anecdotes: Big Data



Social network layer



Online social network layer



Online service network layer

unknown

Earlier work: M. Karsai, G. Iniguez, K. Kaski and J.K:
Journal of the Royal Society Interface 11 (101), 20140694, 2014. 



Here we know the underlying network: 520 M 
nodes of the Voice over Internet service.

r=0.95. The network is NOT ER, broad degree 
distribution.

Shifted power law 
with =3.8
(z=8.56).

Empirical Results



Empirical threshold distribution: log-normal 𝜑 = 0.19

Empirical Results



Initiators vulnerable clusters adopters

Empirical Results



Linear growth

Empirical Results

Rates



Empirical Results – Comparison with Model

Model calculation with empirical threshold and degree 
distributions and evolution time. The density 𝑟emp is 

determined from the plot: 𝑟emp = 0.745.

𝐴𝑑



Empirical Results – Comparison with Model

Distribution of depth of vulnerable trees
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• Cascade model can be extended to describe rich 
kinetics of spreading by inclusion of blocked 
nodes and spontaneous innovators. 

• Blocked nodes problem can be solved by 
generating function method. 3D phase diagram.

• The general rate equation catches important 
features of the model. Fast and slow regimes.

• Simulations show that there is a percolation 
transition of induced clusters in the background.

• ICT based data help in understanding the laws of 
innovation spreading. Two levels of Skype data: 
Free and payed services

• The spreading of payed service is relatively slow 
due to the large number of „blocked” individuals.

Summary


