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Mark Granovetter

The most pressing need for further
development of network ideas Is a
move away from static analyses that observe a
system at one point in time and to pursue
Instead systematic accounts of how such
systems develop and change. Only by careful
attention to this dynamic problem can social
network analysis fulfill its promise as a powerful

Instrument in the analysis of social life.
1983




Dynamics on and of Networks

* Dynamic processes on networks
- Diffusion, random walk
- Transport
- Packet transfer according to protocol
- Synchronization
- Spreading

* Dynamics of networks
- Network growth and development
- Network shrinkage and collapse
- Network restructuring, network adaptation
- Temporal networks




Dynamics on Networks: Diffusion, random walk
Example: PageRank

PR is an iterative procedure to determine the
importance of web pages based on random walk



Transport

Truck Freight Flows, All

Commodities
All truck types; highway freight density in tons

&

http://www.ops.fhwa.dot.gov/freight/Memphis/



Packet transfer according to protocol

For communication a
LJJ, route has to be

A¥ established and kept
open throughout the
exchange of
information

Circuit switching

Device A

Information is

o - = B - . .

Packet switching B" A Al - chopped into
B pieces (packets),

0y X 2 peviee B which travel on
A .
I AL B&_s " different routes
B .-"'- .-"'- - - A
—Ta - and get
Device A reassembled
finally

www.tcpipguide.com



Complex electrical circuit

http://www.networx.com/c.rescigno-electric



Spread of Bubonic

Plague in Europe

. B 1347 1350

S p re a d I n g P mid-1348 1351
[ early-1349 after 1351

late 1349 [0 0.

isings ® City of Orientation

Medieval spreading
of , Black Death”
(short range
interaction)

http://www.historyofinformation.com/
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Legend;
Swine flu June 2009 | 1case [ o-16cases [ 129-256 cases

(long range 7] 2cases [l 17-52cases [l 257512 cases

) ] 3-4 cases [ 33-64 cases || 513-1024 cases
Interactio n) - 5-8 cases - 65-128 cases - 1025-2048 cases




Dynamics of networks



Network growth
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See also network models, e.g., Barabasi-Albert



Network restructuring

grﬂwt contraction

N

—  t+1
merging

Group (community) evolution

Palla et al. Nature 2007)



Network adaptation

Network restructuring is
coupled to an opinion  ° WiRss:
dynamics mechanism  “FSE NS e U
Nodes (people) look for V2 2 G AN AN
more satisfactory \ A B
connections.

The resulting community
structure reflects the
opinions

Iniguez et al. PRE 2009



Time scales

In reality processes on the network and restructuring
happen simultaneously.

Important: Time scales

If time scales separate, one can treat the dynamic
degrees of freedom for the processes on the
network separately from those of the network.
Similar to the adiabatic approximation for solids.

E.g. road construction vs daily traffic



No separation of time scales

Reason:

* The characteristic times are similar (e.g., if the
road is as frequently reconstructed as cars cross the
static model of a network is meaningless.)

* There are no characteristic times (e.g., inter-event
times are power-law distributed)

Even more so, if the network is defined by the events!
E.g.: communication



Temporal networks



Aggregate networks
Consider all links over a period of time

Assuming that
mobile phone
calls represent
social contacts,
the aggregate
network of call
events is a proxy
for the weighted
human interaction
network at
sociatal level.

Onnela et al. PNAS 2007



Spreading (of rumor, disease etc.)

Aggregation: information loss

Incoming information (1)
reaches everyone




Spreading (of rumor, disease etc.)

Incoming information (1)
does not reach @

The sequence of calls is crucial for the process



Network definition

Networks (graphs) are defined as G = {V, E}
where V is the set of nodes (vertices) and E is the

set of — possibly directed — links (edges). Given
the number N of nodes, the network is uniquely
defined by the N X N adjacency matrix A;;
indicating that there is a link from i toj: A;=1 or
A;;= 0 otherwise for non-weighted networks.

Wikipedia



Temporal network definition

A temporal network (contact sequence) is defined as
T = {V,S} where Vis the set of nodes and S is the
set of — possibly directed — event sequences
assigned to pairs of nodes. For Sij S

_ KO 1.4(2) (2). () (n).
Slj - {tu ,TI(J ’tlj ,TI(J ,...,tij ’Tl(J ,...J

where t;-s are the beginnings and z;-s the durations

of events | = | within a time window

7;=0 can often be assumed
. 11f 1 — j connected att
A(l, J,t) =

\ 0 otherwise

continuous or discrete

adjacency index



Temporal network visualization

Holme, Saramaki : Phys. Rep. 519, 97-125 (2012)

Figures are taken from that review if not indicated otherwise



When are temporal networks important?

Always, if sequence of events is important (spreading) or
temporal inhomogeneities matter (jamming).

From each temporal network a (weighted) static network
can be constructed by aggregation.

e e v —
AT “@Q;QC =

Time (days)

tmax
Wij = J A(i,j,t)dt: w;; = # or total duration of events
t

min

This can be used to model dynamic phenomena if processes
are simple (Poissonian).



Relation to multiplex networks: discrete time

Blue lines are strictly directed



Consequences of strong temporal inhomogeneities

Temporal behavior is often non-Poissonian, bursty.
This may have different reasons from seasonalities to
external stimuli and to intrinsic burstiness.
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Examples of temporal networks

* Communication networks

* Physical proximity

* Gene regulatory networks

* Parallel and distributed computing
* Neural networks

* etc.



Examples of temporal networks

e Communication networks

* Physical proximity

* Gene regulatory networks

* Parallel and distributed computing
* Neural networks

* etc.



Temporal communication networks

* One to one
- face to face
- phone
- SMS
- email
- chat

* One to many
- lecture
- multi address SMS
- multi address email
- twit, blog
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Examples of temporal networks

e Communication networks

* Physical proximity

* Gene regulatory networks

* Parallel and distributed computing
* Neural networks

e etc.



Physical proximity

Human or animal
proximity

Important, e.g., for
spread of airborne
pathogens or mobile
phone viruses
transmitted via
bluetooth

Nagy et al Nature 2010

Data: MIT Reality mining (Bluetooth), Barrat group
(RFID), OtaSizzle (tower, WiFi), Copenhagen Network
Study (CDR, Wi-Fi), traffic (GPS)



Examples of temporal networks

* Communication networks

* Physical proximity

* Gene regulatory networks

* Parallel and distributed computing
* Neural networks

e etc.



Gene regulatory networks
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Aggregate NW, in reality: Sequence of chemical
reactions. Order pivotal!

Balazsi et al. Sci. Rep. 2011



Examples of temporal networks

* Communication networks

* Physical proximity

* Gene regulatory networks

* Parallel and distributed computing
* Neural networks

* etc.



Parallel and distributed computing

P
DC: Put all resources % _______ - Q’@fﬁ@g
together to solve @  wwwiorseer ﬂfgég@ﬂ
N T {,.4-*’ / \

single task efficiently. N
W A
@2 ~-

Database Server

Problems similar to "
parallel computing, &
where many resourcs

anager

p rOCGSSO rS WO rk Dedicated Server Cluster © www.Maxi-Pedia.com
simultaneously.

Data transfer: Processes use results of other
units — timing is crucial.



Examples of temporal networks

* Communication networks

* Physical proximity

* Gene regulatory networks

* Parallel and distributed computing
* Neural networks

* etc.



Neural networks

Neurons get stimulating or inhibitory impulses
from other ones

Output heavily depends on the sequence of the
Inputs:
Sy, 11, S, Iy, Sg, I3, Sy,.... is totally different from

S1, Sy S35 Sgpeves 11, Iy Ig,...



Characterizing networks

Aggregated networks can be considered as static ones:
An arsenal of concepts and measures exist:

- path, distance, diameter

- degree

- centrality measures

- correlations (e.g., assortativity)
- components

- minimum spanning tree

- motifs

- communities



Characterizing temporal networks

Similarities with directed networks — due to the
arrow of time.
Difference: sequential order matters

Need for generalization of concepts

- path, distance, diameter
- centrality measures

- components

- motifs



Paths vs reachability

A path in a graph consists of a series of subsequent
edges without visiting a node more than once.

7' (Ln) = $15:655:€34,-1,€ € € E}

A path from 1 to J on the aggregate graph does not

mean that | is reachable from I. 3
B <: C l;l g (;g C@A
C o

T O T

10
There IS a path DA which is symmetric for undlrected

graphs. A can be reached from D but not D from A.
Like for directed graphs

n-1n




Time respecting path (journey)

Temporal networks should be studied with respect
to a time window t;; € (£, tnay)-
J1on = {t12:t23, t3as s tyognltin < o < tp_1n |},

where t;j-s are event times and the nodes {1,2, ..., n}
form a path in the aggregate network.

Time respecting paths define the set of influence of
node i within this window: 7:(t) = {VJ jeV, 3]%
such that all times >t in.7_, j -s are within the
window.

Similarly, the source set is defined as the set of
nodes from which i can be reached by t within

the window 2 (t) = {‘v’j jeV, Hf%,J



L T =

C O & »

..

Journeys are non-transitive: A=>B and
B—>C does not imply A=>C.

: Fp(10) = {4, C}

- P.(5) = (B, D}

L) L) L) 1

llllllllll



Journeys with max. waiting times

(71—>n {tlzl t23) t34; ey

Similarly, sets of influence and source set can be
defined with respect to A,.

tn—l,nltlz <

frinite (A¢) = N z T C(tmln)

a) Mobile call data
char. time: 1-2d

b) Air traffic

char. time: 30 min
(~transfer time)

1.0

() g
0.8} © 1r
< 0.6 8
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A, (in seconds)

< Tp-1nilii+r —

tiigi < Ac)

Reachability ratio:
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O
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100 108 10°

A, (in seconds)

Pan and Saramaki, PRE (2011)



Connectivity and components

For directed networks: Strongly connected
2N o)
Cofifllze Central Core Co(\\.\“b“ wed kly conn.
2 o components

Analogously
for temporal
graphs

e WINDOW-
Islands DEPENDENCE!
Tendrils




Shortest paths, fastest journeys

Length ¢ of a path is the number of edges in it.
Distance d(i,j) is the length of the shortest path.
Duration 6(1,n) of a journey is the time {, | , — 1,
Latency A(i,j) is the duration of the fastest journey.

¢(C,D,B,A)=3
d(C,B,A)=2

5(C1 B;A)=15'8=7
A(CI D; B;A)=3'2+6-3=4

A strongly depends on the time window



Mean shortest path, average latency
d=1/|E| z d(i, ) Defined for a cc?npected
&7 component (E is its edge set)
Generalization to average latency is non-trivial.
1. Mean shortest path tells about spatial
reachability, latency is about time
2. There are strong variations even for the
average over a single link. HERL.

C

Pan and Saramaki, PRE (2011)

latency
— N W B L O

o 5 1 Temporal boundary cond.



Centrality measures |.

Detect importance of elements

Closeness centrality in graphs: inverse average
distance from i

N -1
Cc (1) = —
S 2.dG )
1# |
Temporal analogue
N -1

— where A (I, ]) is the latency from
2 A4G0,]) P> jattimet

1# |

CC (i’t) —



Centrality measures |l.

Betweenness centrality in graphs: proportional
to the number of shortest paths through

element . where V;(J,K) is the number
Cp(i) = 2izj#k Vil K)  of shortest paths through i

Stk VUi B and  W(ik) =2 14(j.k)
Temporal analogue |

Possibilities:
a) Shortest paths ratio conditioned by reachability

b) Fastest path ratio
Temporal BC-s!



Motifs



Static motifs

Main task of studying (static) complex network is
to understand the relation between topology and
function.

Centrality measures try to identify most important
elements.

What are the most important groups of elements?

Motif: set topologically equivalent (isomorphic)
subgraphs

Cardinality of a motif shows its relevance with
respect to a (random) null model.



Relevance of static motifs

If the cardinality of a motif is significantly high,
it is expected that the represented subgraphs
are relevant for some kind of function.

If it is small, the related function is irrelevant
Null model: Configuration model, no degree-

degree correlations. The studied NW is a single
sample, the null model is an ensemble leading to
distributions in properties.

Measure: z-score N,,(emp) — Np,(rnd)

E‘Tﬂ o

T, .

N,.(emp) cardinality of motif m in the empirical NW
N,.(rnd) average cardinality of motif m

o, 1S its standard deviation in the null model



Example for static motifs
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Induced subgraphs

Let’s take a situation, where a star subgraph exists in
the static graph under consideration:

This would contribute to the following
*— motifs:
\ LR — ® +3X e o o

5 Only the last one is
o~ / “real”, the others

| cause caunting
and interpretation
problems

Only induced subgraphs should be considered!



Motifs: Temporal aspects

Time dependence of static motifs
Daily mobility patterns

Trigger statistics (causality)
Temporal motifs

Analysis of role of tagged nodes in temporal
networks



Activity counts on static motifs

Data: Mobile phone time records

® Target:
detect topological objects, where each edge
occurred within a short time window

® Sliding-window counts over the whole data

e “Shuffled-times-reference”: take original event
data, reshuffle all event times

ty

ta 5]

mlo|m | =
mln|lo|w
o

m|o|wE | =

m o0 w
i

ti

L. Kovanen 2014



Activity counts on triangles
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Activity counts on directed triangles

* Shown below: total number of directed triangles for time windows
e 7 possible cases
* Horizontal line: time-reshuffled reference

10° |

104 3

OOt

Total

]“‘: 3

101 3

10Y
120 300 G 180 J6{4
- X ) )
Tme window (s)




Evolution of motifs

Data from Chinese and European mobile phone
services

Time stamped, who calls whom (hashed)

Problem: Which link is representing real social tie?
(And not commercial or technical calls)
Statistically validated network

How are static motifs present in the aggregate form in
time? What is the characteristic time scale?

Ming-Xia Li et al. NJP 2014



Change of the participation of nodes in the
largest connected component

rieina onferroni
O g | Bont

Daily Weekly Monthly All | Daily Weekly Monthly  All

Mean (%) | 29.33 68.62 81.47 85.69 | 041  48.96 72.50 79.12
Ch

SD (%) 853  2.66 2.55 — 0.26  4.82 2.47

Mean (%) | 11.45 75.85 93.89 98.85 | 0.018 34.53 81.35 96.79

SD (%) 3.69 1.77 0.44 — 0.008 4.79 2.38 —

Strong effect, underlining the importance of filtering
Giant component exists in the original but not in the
filtered nw. As time windows grows giant comp. emerges.



Relevance of morifs
Examples of evolution of overrepresented motifs (Ch)

U o Href Oref

110 A%, 0.4 (+) 0.04 3.88¢-6 1.7e-5 .
daily

238 4%, 0.07(+) 001 1.03e-6 1.07e-5

110 A& 1.55(+)  0.12  2.89%-5 6.32¢-6
weekly

238 4», 0.61(+) 0.07 3.06e-7 3.36e-7

110 #, 2.16(+) 0.07 7.4le-5 6.86e-6
monthly

238 A% 1.39 (+) 0.06 1.12e-6 6.83e-7

ref: shuffled network, keeping in/out degrees and
bidirectional links



Examples of evolution of underrepresented
motifs (Ch)

2 o Href Oref
74 A% 12.58 0.34 13.28 0.38 ,
daily
78 A% 345 0.22 3.84 0.25
74 4% 19.6 () 0.41 20.85 0.44
weekly

78 A% 10.29 (-) 0.68 12.43 0.87

74 A 2247 (-) 0.16 23.55 0.15

78 A 1635(-) 034 203 045 mMonthly



Correlations and evolution of motifs:

arrows indicate conditional probabilities from
day Monday — Monday + Tuesday

e /\AAA

A AMl

Ch

A
Aﬁ/ﬁj
TN

\ \ g ’
! ' /"
B! ./'
f f /

Closed triangles form on an intraday scale!




Mobility patterns

Data: Mobile call records with tower
position, surveys (Paris, Chicago)

day 10
day 9
day 8
day 7
day 6
day 5

day 4

dav 2

day 1

X

Spatio-temporal resolution CM. Schneider et al. 2013



Distribution of the number of distinct visited sites

1
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Action triggers (order important)

Data: Mobile call records

® Motivation: detect “causal” ®) q ?*y@j
chains of A calling B, who then & @
calls A or C =
. &)
® (Construction: - «
L \\B

i) take an outgoing event (=t2), :
ii) take earlier incoming event(s)  (p)-—(c¢)

(=0), -
iii) increase event counter at N *""f/@)
&t:tz-t] (E 20103 'QED
112150
® Do this for all outgoing events ® (©

Kovanen: Thesis (2013)
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Action triggers: characteristic reaction time

b | vy M bt | d ey | v
Returned call Returned SMS 1
- 4 « 104 2
—_ 10 E =
3 ' = *
© 18 ©10° |
- - - —_— S
Call to new person | J SMS to new person
£ 10¢ 1 - k j
: . 4
o SR O 108 ~— |
10.9 i |
10V 10! 102 103 104 10V 10} 102 104 104
At At

Ref: average first response

- 10° - 10° | N\ l
é‘ -
5 S | ‘
Rcturlncd call Returned SMS
—— ——
3 ;
2 107} ] = 10° | -
= E - ! 4
Q _ ‘ o
o o
Call to new person Sms to new person \/
M ol e M N PTn | 2 2%y aall Y M Ll Py M
109 10} 102 10% 104 109 10? 102 103 104
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Temporal motifs (formalism)

s; and s, are At-adjacent events if their time difference is
not longer than At.

s;and s, are At-connected events if there is a sequence of
At-adjacent events connecting i and m.

(There is no ordering requested, m is not necessarily
reachable from i.)

A temporal subgraph with respect to At is set of events,
which are mutually At-connected.

A temporal subgraph is valid if no event is skipped at any
node to construct it. It is “consecutive”.

A temporal motif is a set of isomorphic valid temporal
subgraphs, where isomorphism is defined with respect to
the order of events.



E = {Ela*'*aeﬁ} E:nax — {511329‘53?54} Er:la.x = {55"55}

a) Temporal graph (no durations) b), c) Maximal subgraphs

(d) s

t3 =9
i3=29

: Non-valid subgraphs in (b)
d) Valid subgraphs



Maximal temporal motifs

~

-~

o

Q-9 000 At=15
25— ﬁi Two maximal
0. el J temporal subgraphs
g > - (max. set of
) ’ y‘@ry pairwise At-conn
m events)

Temporal motifs based on maximal subgraphs are
maximal temporal motifs.

Importance of a temporal motif is measured by its
cardinality.

Kovanen et al. J. Stat. Mech. (2011)



Results on maximal temporal motifs (different At-s)
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Null models

The comparison of the empirical data with a statistics
on a null model tells whether the properties of the
null model give a good null hypothesis.

(E.g., strong deviations from the configuration model

suggest that topological correlations are important
for static models.)

l. (2012)

vanen et a

Simple time shuffling leads to relevance of too many
motifs.

@)

K

Better: Check relevance of temporal aspects for node

properties (gender, age, type of user): Colored
temporal networks



Simple randomizing the types of nodes does not give
a good null model for their role, since weight may
play a role.

A proper null model can be constructed if the
weight distribution of the aggregate network is
taken into account when randomizing the colors.
The null model is created by counting the motifs

assuming dependence only on edge weight but
not on node type.



Results on motifs as compared to null model

Most frequent motifs
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Example of temporal effects

A
10 00 99 O DY

¥54%  +42%  +41% 4419 LStPretopost

B
V v v v Outstar: Target
age same

+201 % +152 % +145 % +134 %

@ Female, 42 + 2 years old, prepaid user
6 Male, 50 + 2 years old, postpaid user



Observations:
- Clear indication of temporal homophily. Very
strong for prepaid — socioeconomic background

- Outstars with same category of target are
overrepresented

- Chains and stars overrepresented for femails

- Local edge density correlates with temporal
overrepresented motifs (temporal Granovetter
effect)



Summary

Temporal networks are important for dynamic processes on
complex networks if links are defined by the events and
events happen inhomogeneously in time and/or the
sequence of events is crucial

Temporal networks are defined with respect to a time
window of observation.

Many concepts can be generalized:
path, distance, connectivity, motifs etc.
Motifs: static in evolution, mobility, temporal

Burstiness has a decelerating effect on spreading (!)

Broad field of applications



