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Motivation

Modelling

The art of Modelling is based on

I Find the most important features

I Realize a synthetic system based on these features

I Check if the model can reproduce the real system

I Predict future behaviour of the system through the model
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Hidden and Evident Hypotheses

Graphs connect

I part of cities across rivers

I buidings

I offices in the same building

Vertices are stable and edge
creation has a finite and not
negligible cost
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History

The main motivation in the creation of Random Graph theory was
to provide

I a benchmark for the connection of various vertices

I in the case of connecting different buildings with costly phone
lines
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Definition

I Take a fixed number of
vertices N

I no edge is present

I we draw a set of m edges
out of the N(N − 1)/2
available

I every edge is extracted with
a fixed probability p

Such model is known as Random
Graph model
[Erdős et al. 1959, Gilbert 1959].
No “particular” vertex can be
found.
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Common Definition

I Take N vertices

I For any couple of vertices draw a link with probability p

Expected value of Graph

The total number of edges m is a random variable with the
expectation value E(m)=p[N(N-1)/2] .

If G0 is a graph with N nodes and m edges, the probability of
obtaining it by this graph construction process is
P(G0) = pm(1− p)N(N−1)/2−m
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First use

I a benchmark for the
connection of various
vertices

I in the case of connecting
different buildings with
costly phone lines
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Degree Distribution

Similarly it is possible to determine the degree
distribution[Bollobas 1985]. To have degree k

I an edge must be drawn k
times pk(1− p)(N−1)−k

I this can happen in(
N − 1
k

)
= (N−1)!

(N−1−k)!k!

combinations

This distribution is automatically normalized since∑
k=1,n−1

Pk = (p + (1− p))N−1 = 1.
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Degree Distribution II

This distribution is usually approximated by means of the Poisson
distribution in the two limits N →∞ and p → 0 (when Np is kept
constant and N − 1 ' N) we have:

Pk =
N!

(N − k)!k!
pk(1− p)N−k ' (Np)ke−pN

k!
.

Since the mean value 〈k〉 of the above distribution is given by np
we can write

Pk =
〈k〉ke−〈k〉

k!
.
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Degree Distribution III

I The above results are telling us that a characteristic degree
exists

I This corresponds to the mean value 〈k〉 = Np.

I Both larger and smaller values are less probable.

I On this respect the random graph model does not reproduce
complex networks
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Clustering

We can give an estimate of the Clustering Coefficient: for a
complete graph it must be 1. If the graph is enough sparse then
two points link each other with probability p

Expected value

E (C ) ' p =
〈k〉
N
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Diameter

Same estimate can be given for the average distance l between two
vertices.If a graph has 〈k〉 average degree then

I the first neighbours will be 〈k〉
I the second neighbours will be at most 〈k〉2

I the n-th neighbours will be at most 〈k〉n

I For the Diameter D, we assume 〈k〉D of order N

Expected values

〈l〉 ≤ D ' logN

log k
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Connectedness

I If 〈k〉 = pN < 1, a typical graph is composed of isolated trees
and its diameter equals the diameter of a tree.

I If 〈k〉 > 1, a giant cluster appears. The diameter of the graph
equals the diameter of the giant cluster if 〈k〉 > 3.5, and is
proportional to ln(N)/ln(〈k〉).

I If 〈k〉 > ln(N), almost every graph is totally connected. The
diameters of the graphs having the same N and 〈k〉 are
concentrated on a few values around ln(N)/ln(〈k〉)
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Coloring of a map

The theorem

Given any separation of a plane into contiguous regions, producing
a figure called a map, no more than four colors are required to
color the regions of the map so that no two adjacent regions have
the same color.
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Counterexamples
Two regions are called adjacent if they share a common boundary
that is not a corner, where corners are the points shared by three
or more regions. For example, in the map of the United States of
America, Utah and Arizona are adjacent, but Utah and New
Mexico, which only share a point that also belongs to Arizona and

Colorado, are not
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Graph theory

This problem can be easily visualized with planar graphs. The set
of regions of a map can be represented more abstractly as an
undirected graph that has a vertex for each region and an edge for
every pair of regions that share a boundary segment
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The Percolation model

Percolation

Sites (or bonds) of a lattice are chosen with probability p.
By varying p we have different clusters [Stauffer 2009].

I Bond percolation on a 2D latttice (25× 25).

I Two nodes are connected by an edge with probability p.

I Two realizations: left p=0.315, right p=0.525

At p = pc = 0.5, the bonds form a single cluster.
This value is indicated as percolation threshold.
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The Percolation model

Percolation arise in a quantity of systems

I coffee (with percolator),

I water into rocks to extract oil (invasion percolation)

I certain types of fractures (mud cracking)

I networks (robustness to random and targeted attacks)

I wildfire propagation

I Epidemic spreading

how it is possible?

Universality

there are properties for a large class of systems that are
independent of the dynamical details of the system. Systems
display universality in a scaling limit, when a large number of
interacting parts come together.
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Percolation and Random Graphs

For p < pc = 1/N

I The probability of a giant cluster in a graph, and of an infinite
cluster in percolation, is equal to 0.

I The clusters of a random graph are trees, while the clusters in
percolation have a fractal structure and a perimeter
proportional with their volume.

I The largest cluster in a random graph is a tree with ln(N)
nodes, while in general for percolation Pp(|C | = s) ' e−s/ξ,
suggesting that the size of the largest cluster scales as ln(N).
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Percolation and Random Graphs

For p = pc = 1/N

I A unique giant cluster or an infinite cluster appears.

I The size of the giant cluster is N2/3 while for infinite
dimensional percolation Pp(|C | = s) s−3/2, thus the size of
the largest cluster scales as N2/3.
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Percolation and Random Graphs

For p > pc = 1/N

I The size of the giant cluster is (f (pcN)− f (pN))N, where f is
an exponentially decreasing function with f (1) = 1. The size
of the infinite cluster is ∝ (p − pc)N.

I The giant cluster has a complex structure containing cycles,
while the infinite cluster is no longer fractal, but compact.
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Configuration model

I Let’s start with the degree sequence.

I imagine that each node has edge “stubs” attached to it
[Bender et al. 1978, Molloy et al. 1995].

I Edges are then assigned by randomly choosing two stubs and
drawing an edge between them.
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How to build the graph

As we see here, it happens that we end up with multiple edges
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Probability of connections

Let ki , kj denote the non-zero degrees of two particular vertices i , j
in a network of m edges.
For a particular stub attached to vertex i , there are kj possible
stubs, out of 2m − 1 possible ones

probability that i and j are connected

is given by
kikj

2m − 1
'

kikj
2m
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Number of multiple edges

The probability that a second edge appears between i , j is

(ki − 1)(kj − 1)

2m

Thus, the probability of both a first and a second edge is

kikj(ki − 1)(kj − 1)

(2m)2

.
We can now need obtain the number of multiple edges summing
up on all the possible couples
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Total multiple edges

∑
ij

kikj
2m

(ki − 1)(kj − 1)

(2m)
=

1

2

1

(2m)2

n∑
i=1

ki (ki − 1)
n∑

j=1

kj(kj − 1)

=
1

2

1

〈k〉2n2

n∑
i=1

(k2
i − ki )

n∑
j=1

(k2
j − kj)

=
1

2

1

〈k〉2

(
1

n

n∑
i=1

k2
i −

1

n

n∑
i=1

ki

)2

=
1

2

[
〈k2〉 − 〈k〉
〈k〉

]2

(1)
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Self-Loops

The number of self-loops can be computed similarly. We have that

I The number of pair of possible connections is
(ki

2

)
and not

kikj .

I Thus, the probability of a self-loop is pii = ki (ki−1)
4m ,

I The expected number of self-loops is (the constant)

〈k2〉 − 〈k〉
2〈k〉

Just as with multi-edges, self-loops are a vanishingly small O(1/n)
fraction of all edges in the large-n limit.
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CM with expected degree

A generalization consists in considering the expected degree
sequence and not the actual one.

Chung-Lu model

Every node i has an expected degree wi , each possible edge exists
independently with probability pij =

wiwj∑
k wk

the expected degree of a node is given by

〈k〉 =
∑
j

pij =
wi
∑

j wj∑
k wk

= wi
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Simple case ERGM

Let us consider a simple case. The only observable is the number
of edges E

I H(G ) = θE (G )

I The partition function is

Z =
∑
G∈G

eθE(G)

=
∑
G∈G

∏
i=1,n

∏
j=i+1,n

eθAij (G) (Aij(G ) = 0, 1)

=
∏
i=1,n

∏
j=i+1,n

(1 + eθ) = (1 + eθ)(n2)
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ERGM and RG

We can now compute the probability to observe a graph with E
edges

P(G ) =
eH(G)

Z
= eθE (1 + eθ)(n2) =

(
eθ

1 + eθ

)E (
1− eθ

1 + eθ

)(n2)−E

but also
P(G ) = pE (1− p)(n2)−E

from which we recognise that the two coincide if p = eθ

1+eθ
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Conclusion

Random Graph

I Do not reproduce the degree distribution

I do reproduce the distance distribution

I are less clustered

I are more robust to target attack

than real networks
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Small-World Definition

small-world effect

The small-world model explains why the diameter of real graphs
can remain very small when the number of vertices increases
(small-world effect).

We have seen in the previous section that in the random graph
model the diameter increases logarithmically with respect to the
number of vertices. This is a common feature in most if not all
graph models.
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Model Definition

I start with a portion of an
ordered grid;

I vertices at one (and two)
grid units are connected;

I they form the set of the first
neighbours;

I Add shortcuts with
probability p.
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Basic Ingredients

Basic idea

On top of every-day links,
random connections are also
established with probability p
between vertices.
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Model Parameters

Tunable quantities

There are two main quantities that can be changed in the model

I The coordination number z that gives the number of
vertices directly connected in the regular structure.

I The probability of rewiring p that gives the probability per
existing edge to draw a new edge (shortcut) between two
random vertices.
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Coordination number

In a one-dimensional (d = 1)
system with j = 2 connectivity
every vertex has z = 4
connections with other vertices
(two from one side and two from
the other). This number of
connections also grows with the
dimensionality. In general we can
write

z = 2jd .
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Shortcuts Probability

If p is the probability to draw a
shortcut, the expected value of
total number of shortcuts is

mp = nzp/2.

To remove the 2 in this formula,
we can define the coordination
number as z ′ = z/2. In this way
the total number of shortcuts
becomes nz ′p.
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The Length Distribution

I On a regular grid the average distance grows with the number
of vertices N

I In small world model the shortcuts keep distances small

I Using numerical simulation we can compute the variation on
the diameter. Take N = 1, 000 vertices (d = 1), a
coordination number z = 10,

I with a rewiring probability p = 1/4 = 0.25 we have a
diameter as small as d = 3.6.

I with p as small as p = 1/64 = 0.015625 we still find a
small diameter d = 7.6.

I With no rewiring at all, the diameter of the same system is
d = 50.
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Phase transition

It has been proposed an analytical expression for the mean distance
l

l =
n

z ′
f (npz ′)

where z ′ = z/2 and the function f (x) is

f (x) =
1

2
√
x2 + 2x

tanh−1 x√
x2 + 2x

.
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Clustering Coefficient

The clustering coefficient of the whole network is usually very
high and it is reminiscent of the regular connection of the
underlying grid. As long as z stays reasonably small and in
particular z < 2

3n (as is the case when n→∞), we have:
For the original formulation (with rewiring)

C =
3(z − 1)

2(2z − 1)
(1− p)3

while for the formulation without rewiring

C =
3(z − 1)

2(2z − 1) + 4zp(p + 2)
.
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The Degree Distribution

I We have that the degree distribution is a function peaked
around the fixed value z characteristic of the regular grid.

I With no shortcuts, the distribution is not even a regular
function, but it is zero elsewhere apart from z (it is a delta
function different from zero only in z and zero otherwise).

I When shortcuts are many and there is no more underlying grid
we must expect a behaviour similar to that of random graph.
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Motivation

Growth

The Barabási-Albert model wants to reproduce the time growth of
many real networks (e.g. Internet and WWW)

To reproduce this feature the graph is built through successive
time-steps when new vertices are added to the system. Also the
number of edges increases time, since the new vertices connect to
the old ones.

Preferential Attachment

The vertices destination (those already present) are chosen with a
probability that is proportional to their degree at the moment.
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The two ingredients

Growth implies that new vertices enter the network at some rate.
Preferential attachment means that these newcomers establish
their connections preferentially with vertices that already have a
large degree (rich-get-richer). This latter rule is in the spirit of the
Matthew effect More quantitatively, this model can be reconnected
to a Yule process described in the same section. Growth and
preferential attachment are specifically suited to model the Internet
and the World Wide Web (though the latter is directed while the
former is not), two networks that in a relatively short timespan
(fifteen to twenty years) have seen a huge growth of their elements.
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The rules for the construction

1. We start with a disconnected set of
n0 vertices (no edges are present).

2. New vertices enter the system at
any time step. For any new vertex
m0 new edges are drawn.

3. The m0 new edges connect the
newcomers’ vertices with the old
ones. The latter are extracted with
a probability Π(ki ) proportional to
their degree, that is

Π(ki ) =
ki∑

j=1,n kj
.
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The rules for the construction

Note that, since at every time step only one vertex enters, we have
for the order and the size of the network respectively

n = n0 + t

m = 1/2
∑
j=1,n

ki = m0t. (2)
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Growth

Analytical indications

Here we consider the degree as a continuous variable. New vertices
enter the network at a constant rate.

At time t the old ones are n = n0 + t − 1. The first quantity we
can derive is the variation of the degree with time.

∂ki
∂t

= AΠ(k) = A
ki∑

j=1,n kj
=

Aki
2m0t

.

The constant A is the change of connectivity in one time step,
therefore A = m0. Since at initial time ti the initial degree is
k(ti ) = m0 we have

∂ki
∂t

=
ki
2t
→ ki (t) = m0

(
t

ti

)1/2

.
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Degree Distribution I

Analytical indications

This simple computation shows that in a Barabási-Albert model
the degree grows with the square root of time. This relation allows
us to compute the exponent of the degree distribution:

The probability P(ki < k) that a vertex has a degree lower than k

is P(ki < k) = P(ti >
m2

0t
k2 ). Since vertices enter at a constant

rate, their distribution is uniform in time, that is P(t) = A, where
A is a constant. The value of A can be determined by imposing
normalization of the distribution. This means

∫ n
0 A = 1, which

gives
A = P(t) = 1/n = 1/(n0 + t).
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Degree Distribution II

In this way, we can write

P(ti >
m2

0t

k2
) = 1− P(ti ≤

m2
0t

k2
) = 1− m2

0t

k2

1

(n0 + t)

from which we have

P(k) =
∂P(ki > k)

∂k
=

2m2
0t

(n0 + t)

1

k3
.

Therefore, we find that the degree distribution is a power law with
a value of the exponent γ = 3.
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Plot of the degree distribution for a Barabási-Albert model
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Properties of the Barabási-Albert

For this model some results have been obtained:

I The degree distribution is scale invariant only if the
preferential attachment rule is perfectly linear; otherwise the
degree is distributed according to a stretched exponential
function.

I As regards the diameter D of Barabási-Albert networks, an
analytical computation shows that D ∝ ln(n)/ ln(ln(n)).

I The clustering coefficient of a Barabási-Albert model is five
times larger than those of a random graph with comparable
size and order. It decreases with the network order (number of
vertices). Some analytical results are available in the
particular limit of large and dense graphs.
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1st change: growth of edges

Edges Growth

Not only the vertices but also the edges can ‘grow’. In particular,
we can allow new edges to be added between existing vertices.

The motivation of this model was to provide a more realistic model
for study of the World Wide Web. Indeed in this specific network
(as turned out to be the case also for Wikipedia) most of the
modifications are addition or rewiring of edges. In the model, the
edges are directed, therefore every vertex i is determined by both
the in-degree k ini and out-degree kouti .
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Rules

1. With probability p a new vertex is added to the system. Edges
are drawn according to the preferential attachment rule. The
key quantity is the in-degree of the target vertex j . In this
case the preferential attachment probability is given by
Π(k inj ) = (k inj + λ)

2. With probability q = (1− p) a new directed edge is added to
the system. The choice of the end vertices depends upon the
out-degree kouti of the originating vertex i and the in-degree
k inj of the target vertex j . This creation function is assumed
to be of the form

C (kouti , k inj ) = (k inj + λ)(kouti + µ).
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Form of Distribution

It is possible to derive analytically the form of the two distributions
P(k in) and P(kout), they are

P(k in) ∝ k−γ
in → γ in = 2 + pλ,

P(kout) ∝ k−γ
out → γout = 1 +

1

q
+
µp

q
.

beyond BA / Edges networks.imtlucca.it 53/82



Form of Distribution

Motivation

Actors can retire or die and do not attract any more edge. Similar
consideration apply to the networks of scientific citations.

These effects can be put into the model by introducing an ageing
effect. Vertices in the network can be either active of inactive. In
the first state they can still receive edges and modify their state.
Otherwise their dynamics is frozen and they no longer take part in
the evolution of the system. At any time step, the number m of
active vertices is kept constant.
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Rules

1. growth mechanism remains and new vertices enter the system
at any time step. Newcomers are always in the active state.

2. A number m0 of new edges are drawn between the newcomer
vertex and every one of the active vertices.

3. One vertex i is selected from the set of active ones. This
vertex is deactivated and removed from the evolution of the
system. This happens with a probability

Pdeact
i =

1

N

1

(ki + a)
=

1∑
j=1,Na

(kj + a)−1

1

(ki + a)
.

Where ki is the degree of vertex i , a is a constant, and 1/N is
the normalization constant given by
1/N = 1/

∑
j=1,Na

(kj − a)−1.
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Results

The degree distribution can computed and it is still a power law
P(k) ∝ (k + a)−γ .
The clustering coefficient of this model is larger than that of
random graphs and fits nicely the data of some real networks. An
analytical estimate gives the value C = 5/6 while from computer
simulations we find C = 0.83.
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Motivations

An example of how a specific case study could inspire the
definition of a network model is again given by the World Wide
Web. If you want to add your web page to the system (i.e. add a
vertex and some edges to the graph) one common procedure is to
take one template (a page that you like) and to modify it a little
bit. In this way most of the old hyperlinks are kept
The same mechanism is in agreement with the current view of
genome evolution. When organisms reproduce, the duplication of
their DNA is accompanied by mutations. Those mutations can
sometimes entail a complete duplication of a gene. A protein can
now be produced by two different copies of the same gene; this
means that point-like mutations on one of them can accumulate at
a rate faster than normal, since a weaker selection pressure is
applied.
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Results

The rate of change of the in-degree of a node is then given by

∂kin,i (t)

∂t
= (1− α)

kin,i (t)

n
+ m0

α

n
(3)

where the first term on the right-hand side of eqn 3 is the
probability that a vertex pointing to vertex i is duplicated and its
edges toward i retained. The second term on the right-hand side
represents the probability that the duplicated vertex points toward
i by one of its rewired out-going edges. For linearly growing
networks we have that n ' t. The solution of eqn 3 is

k ini (t) =
m0α

1− α

[(
t

ti

)1−α
− 1

]
(4)
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Motivation

FItness Model

Not necessarily all the vertices are created equal. Likely this affects
the network creation

We must assign a scalar quantity (indicated by ηi or xi ) for every
vertex and modify the models accordingly
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Definition of Bianconi-Barabási
model

I We start with n0 different vertices characterised by a constant
ability (fitness) ηi to attract new edges. The ηi are extracted
from a probability distribution ρ(η).

I The growth remains with new vertices entering the system
with their new fitnesses ηi .

I The preferential attachment is slightly modified, taking into
account the fitnesses. The edges are drawn towards the old
vertices with a probability Π(ki , ηi )

Π(ki , ηi ) =
ηiki∑

j=1,n ηjkj
.
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Model Definition

It is possible to derive analytically the form of the degree
distribution that is now dependent upon the form of the fitness
distribution ρ(η). In the case of a uniform distribution (i.e. ρ(η)
constant), we have that

P(k) ∝ k−(1+C∗)

ln(k)
(5)

where C ∗ = 1.255 is a constant whose value is determined
numerically.
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Fitness

While no particular result is known for the clustering, this model
develops non-trivial disassortative properties that make it a very
good model to reproduce Internet autonomous systems properties.

Fitness / Foundation networks.imtlucca.it 62/82



Beyond Preferential Attachment

Although in some contexts preferential attachment can be a very
reasonable assumption, in many others it is certainly not. Instead,
it is reasonable to think that two vertices become connected when
the edge creates a mutual benefit.
This benefit depends on some intrinsic properties
(authoritativeness, friendship, social success, scientific relevance,
interaction strength, etc) of the vertices.
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Fitness Model

Basic principles

Vertices have state variable (fitness)
Edges drawn with (fitness-dependent) probabilities

x1

x2

x3

x4

f (x1, x2)

f (x3, x4)
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Fitness Models

This model is based on a modification of Random Graphs.
Vertices differ, edges are not equally likely1 2

P(k) = Ak−γ for a variety of choices
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Definition

I Start with n vertices. For every vertex i draw a real number xi
representing the fitness of the vertex. Fitnesses are supposed
to measure the importance or rank of the vertex in the graph
and they are extracted from a given probability distribution
ρ(x).

I For every couple of vertices, i , j , we can draw an edge with a
probability given by the linking function f (xi , xj) depending on
the fitnesses of the vertices involved. If the network is not
directed the function f is symmetric that is
f (xi , xj) = f (xj , xi ).
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Limit case

A trivial realization of the above rules is the model of Erdős and
Rényi. In this case the f (xi , xj) is constant and equal to p for all
vertex couples. While this particular choice does not produce
scale-free networks, as soon as random fitnesses are introduced,
the situation changes completely.

static vs dynamic ?

This model can be considered static as well as dynamic. If the size
of the graph is fixed, one checks all the possible couples of vertices
as in the random graph model. Otherwise by adding new vertices
at every time step, one can connect the new ones to the old ones.
A general expression for the degree distribution P(k) can be
derived easily.
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Physical Meaning

Without introducing growth or preferential attachment we can
have power-laws We consider “disorder” in the Random Graph
model (i.e. vertices differ one from the other).
This mechanism is responsible of self-similarity in Laplacian
Fractals
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Formulas

Parameters of the model
I ρ(y) from which we extract fitnesses

I f (x , y) to draw edges

For any choice

k(x) = N

∫ ∞
0

f (x , y)ρ(y)dy = NF (x)

Under suitable conditions we can write

P(k) = ρ

[
F−1

(
k

N

)]
d

dk
F−1

(
k

N

)
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Example

As a particular example, consider f (x , y) ∝ xy . Then

k(x) = ANx

∫ ∞
0

yρ(y)dy = ANx〈x〉

and we have the simple relation,

P(k) =
1

NA
ρ(

k

NA
)

Whenever ρ(x) is power law, we have P(k) power law.

Note that...

Power laws arise spontaneously in other cases.
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SOC and Networks

Networks can arise from Self-Organised Processes

We start from a graph with arbitrary degree sequence We define a
“local ” (for the sites) rule of update We find a steady state
characterised by power-law distribution of the degree This
mechanism can maybe explain the onset of most of the observed
Pareto’s law in nature and consequently explain the ubiquity of
scale-free networks. The behaviour of the model can be understood
in terms of the Bak-Sneppen model of Self-Organised Criticality
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Here we focus on the case when the two processes evolve over
comparable timescales, by considering the interplay between
topology and dynamics

As a result, the process is self-organized and a non-equilibrium
stationary state is reached, independently of (otherwise arbitrary)
initial conditions
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SOC Models
BTW Sandpile Model:

sand is added on the sites of a lattice. At a critical

threshold, the site topples on the neighbours

triggering other topplings

P. Bak, C. Tang, K. Weisenfeld PRL 52, 1033 (1984).
BS Bak and Sneppen Model:

A system of species i characterized by a fitness hi.

Recursively the species with the minimum fitness

and its neighbours are removed and changed with

three new ones with random ηi
P. Bak, K. Sneppen PRL 71, 4083 (1993).
IP Invasion Percolation:

A fluid (water) is injected in a porous medium to

extract oil. Amongst the different channels on the

boundaries the one with the minimum diameter is

selected to be invaded.

D. Wilkinson and J. F. Willemsen, J. Phys. A (London) 16, 3365 (1983).
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Definitions

I We start from a graph with fitnesses on
sites INITIAL DISTRIBUTION DOES
NOT MATTER

I We select the minimum fitness and
remove this site and all its neighbours

I We repeat the procedure many times
(> 105)

The system approaches a steady state, where

I The fitness distribution is a power law

I The degree distribution is a power law
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Definitions 2

The linking probabilities that we used are

I f1(xi , xj) ∝ z(xi + xj)

I f2(xi , xj) ∝ zxixj
I f3(xi , xj) ∝ zxixj1 + zxixj

The fitness refreshment rule we used for the neighbors are

I xnewi = η

I xnewi = 1
ki

[
(ki − 1) xold + η

]
where (η ∈ [0, 1])
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Fitness Model

Unexpected power laws

I ρ(x) = e−x , f (x , y) = θ(x + y − z)→ P(k) ∝ k−2.

I Self-Organized Processes → P(k) ∝ k−1

x1

x2

x3

x4
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WTW Modelling

GDP

The GDP determines the property of the network

A fitness model based on GDP reproduces the data

xi =
wi∑N
j=1 wj

f (xi , xj) =
δxixj

1 + δxixj

where wi is the GDP of country i and δ > 0 is the only free
parameter of the model

G. Caldarelli, A. Capocci, P. De Los Rios and M.-A, Muñoz, PRL 89, 258702 (2002)
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WTW Modelling 2

GDP

The Pareto’s shape of GDP propagates in the WTW

D. Garlaschelli and M.I. Loffredo, PRL 93, 188701 (2004)

D. Garlaschelli, T. D. Matteo, T. Aste, G. Caldarelli, and M. I. Loffredo, EPJB 57, 159 (2007)
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